950 resultados para Molybdenum in the soil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Key Technology RD Program [2006BAD03A02]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil net nitrogen mineralization (NNM) of four grasslands across the elevation and precipitation gradients was studied in situ in the upper 0-10 cm soil layer using the resin-core technique in Xilin River basin, Inner Mongolia, China during the growing season of 2006. The primary objectives were to examine variations of NNM among grassland types and the main influencing factors. These grasslands included Stipa baicalensis (SB), Aneulolepidum Chinense (AC), Stipa grandis (SG), and Stipa krylovii (SK) grassland. The results showed that the seasonal variation patterns of NNM were similar among the four grasslands, the rates of NNM and nitrification were highest from June to August, and lowest in September and October during the growing season. The rates of NNM and nitrification were affected significantly by the incubation time, and they were positively correlated with soil organic carbon content, total soil nitrogen (TN) content, soil temperature, and soil water content, but the rates of NNM and nitrification were negatively correlated with available N, and weakly correlated with soil pH and C:N ratio. The sequences of the daily mean rates of NNM and nitrification in the four grasslands during the growing season were AC > SG > SB > SK, and TN content maybe the main affecting factors which can be attributed to the land use type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetation cover plays an important role in the process of evaporation and infiltration. To explore the relationships between precipitation, soil water and groundwater in Taihang mountainous region, China, precipitation, soil water and water table were observed from 2004 to 2006, and precipitation, soil water and groundwater were sampled in 2004 and 2005 for oxygen-18 and deuterium analysis at Chongling catchment. The soil water was sampled at three sites covered by grass (Carex humilis and Carex lanceolata), acacia and arborvitae respectively. Precipitation is mainly concentrated in rainy seasons and has no significant spatial variance in study area. The stable isotopic compositions are enriched in precipitation and soil water due to the evaporation. The analysis of soil water potential and isotopic profiles shows that evaporation of soil water under arborvitae cover is weaker than under grass and acacia, while soil water evaporation under grass and acacia showed no significant difference. Both delta O-18 profiles and soil water potential dynamics reveal that the soil under acacia allows the most rapid infiltration rate, which may be related to preferential flow. In the process of infiltration after a rainstorm, antecedent water still takes up over 30% of water in the topsoil. The soil water between depths of 0-115 cm under grass has a residence time of about 20 days in the rainy season. Groundwater recharge from precipitation mainly occurs in the rainy season, especially when rainstorms or successive heavy rain events happen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A probabilistic soil moisture dynamic model is used to estimate the soil moisture probability distribution and plant water stress of irrigated cropland in the North China Plain. Soil moisture and meteorological data during the period of 1998 to 2003 were obtained from an irrigated cropland ecosystem with winter wheat and maize in the North China Plain to test the probabilistic soil moisture dynamic model. Results showed that the model was able to capture the soil moisture dynamics and estimate long-term water balance reasonably well when little soil water deficit existed. The prediction of mean plant water stress during winter wheat and maize growing season quantified the suitability of the wheat-maize rotation to the soil and climate environmental conditions in North China Plain under the impact of irrigation. Under the impact of precipitation fluctuations, there is no significant bimodality of the average soil moisture probability density function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been experimentally found that molybdenum oxide (MoO3) as the interfacial modification layer on indium-tin-oxide (ITO) in organic light-emitting diodes (OLEDs) significantly improves the efficiency and lifetime. In this paper, the role of MoO3 and MoO3 doped N,N '-di(naphthalene-1-yl)-N,N '-diphenyl-benzidine (NPB) as the interface modification layer on ITO in improvement of the efficiency and stability of OLEDs is investigated in detail by atomic force microscopy (AFM), polarized optical microscopy, transmission spectra, ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).