976 resultados para Modulation.
High power and spectral efficiency coded digital modulation schemes for nonlinear satellite channels
Resumo:
A self-consistent theory of plasma response to a single laser beam is proposed. The driving pump is not viewed as invariant during its interaction with the plasmas. Its modulation by the plasmas has an obvious influence on the strength of the wakefield behind the pulse. This suggests that the compression of the low-intensity pulse by the plasmas might be a possible way to excite largae-amplitude wakefield. (C) 2003 American Institute of Physics.
Resumo:
C. elegans is a compact system of 302 neurons with identifiable and mapped connections that makes it ideal for systems analysis. This work is a demonstration of what I have been able to learn about the nature of state-specific modulation and reversibility during a state called lethargus, a sleep-like state in the worm. I begin with description about the nervous system of the worm, the nature of sleep in the worm, the questions about behavior and its apparent circuit properties, the tools available and used to manipulate the nervous system, and what I have been able to learn from these studies. I end with clues that the physiology helps to teach us about the dynamics of state specific modulation, what makes sleep so different from other states, and how we can use these measurements to understand which modulators, neurotransmitters, and channels can be used to create different dynamics in a simple model system.
Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila melanogaster
Resumo:
Activity-dependent modulation of sensory systems has been documented in many organisms, and is likely to be essential for appropriate processing of information during different behavioral states. However, the mechanisms underlying these phenomena, and often their functional consequences, remain poorly characterized. I investigated the role of octopamine neurons in the flight-dependent modulation observed in visual interneurons in the fruit fly Drosophila melanogaster. The vertical system (VS) cells exhibit a boost in their response to visual motion during flight compared to quiescence. Pharmacological application of octopamine evokes responses in quiescent flies that mimic those observed during flight, and octopamine neurons that project to the optic lobes increase in activity during flight. Using genetic tools to manipulate the activity of octopamine neurons, I find that they are both necessary and sufficient for the flight-induced visual boost. This work provides the first evidence that endogenous release of octopamine is involved in state-dependent modulation of visual interneurons in flies. Further, I investigated the role of a single pair of octopamine neurons that project to the optic lobes, and found no evidence that chemical synaptic transmission via these neurons is necessary for the flight boost. However, I found some evidence that activation of these neurons may contribute to the flight boost. Wind stimuli alone are sufficient to generate transient increases in the VS cell response to motion vision, but result in no increase in baseline membrane potential. These results suggest that the flight boost originates not from a central command signal during flight, but from mechanosensory stimuli relayed via the octopamine system. Lastly, in an attempt to understand the functional consequences of the flight boost observed in visual interneurons, we measured the effect of inactivating octopamine neurons in freely flying flies. We found that flies whose octopamine neurons we silenced accelerate less than wild-type flies, consistent with the hypothesis that the flight boost we observe in VS cells is indicative of a gain control mechanism mediated by octopamine neurons. Together, this work serves as the basis for a mechanistic and functional understanding of octopaminergic modulation of vision in flying flies.
Resumo:
The interaction of shaped laser pulses with plasmas is studied in a strict theoretical framework without adopting the slow-varying envelope approximation (SVEA). Any physical quantities involved in the interaction are denoted as a summation of different real quantities of respective phases. The relationships among the phases of those real quantities and their moduli are strictly analyzed. Such strict analyses lead to a more exact equation set for the three-dimensional envelope of the laser pulse, which is not based on SVEA. Based on this equation set, self-focusing, Raman, and modulation instabilities could be discussed in a unified framework. The solutions of this equation set for the laser envelope reveal many possible multicolor laser modes in plasmas. The energy and the shape of a pulse determine its propagation through plasmas in a multicolor mode or in a monochromic mode. A global growth rate is introduced to measure the speed of the transition from the monochromic mode in vacuum to a possible mode in plasmas. (c) 2006 American Institute of Physics.
Resumo:
Cancellation of interfering frequency-modulated (FM) signals is investigated with emphasis towards applications on the cellular telephone channel as an important example of a multiple access communications system. In order to fairly evaluate analog FM multiaccess systems with respect to more complex digital multiaccess systems, a serious attempt to mitigate interference in the FM systems must be made. Information-theoretic results in the field of interference channels are shown to motivate the estimation and subtraction of undesired interfering signals. This thesis briefly examines the relative optimality of the current FM techniques in known interference channels, before pursuing the estimation and subtracting of interfering FM signals.
The capture-effect phenomenon of FM reception is exploited to produce simple interference-cancelling receivers with a cross-coupled topology. The use of phase-locked loop receivers cross-coupled with amplitude-tracking loops to estimate the FM signals is explored. The theory and function of these cross-coupled phase-locked loop (CCPLL) interference cancellers are examined. New interference cancellers inspired by optimal estimation and the CCPLL topology are developed, resulting in simpler receivers than those in prior art. Signal acquisition and capture effects in these complex dynamical systems are explained using the relationship of the dynamical systems to adaptive noise cancellers.
FM interference-cancelling receivers are considered for increasing the frequency reuse in a cellular telephone system. Interference mitigation in the cellular environment is seen to require tracking of the desired signal during time intervals when it is not the strongest signal present. Use of interference cancelling in conjunction with dynamic frequency-allocation algorithms is viewed as a way of improving spectrum efficiency. Performance of interference cancellers indicates possibilities for greatly increased frequency reuse. The economics of receiver improvements in the cellular system is considered, including both the mobile subscriber equipment and the provider's tower (base station) equipment.
The thesis is divided into four major parts and a summary: the introduction, motivations for the use of interference cancellation, examination of the CCPLL interference canceller, and applications to the cellular channel. The parts are dependent on each other and are meant to be read as a whole.
Resumo:
We investigate a four-level double-Lambda atomic scheme interacting with four laser fields, a weak probe field, a weak signal field and two driven fields, in a closed-loop configuration. We study the Kerr nonlinearity associated with cross-phase modulation based on electromagnetically induced transparency. Our results show, in this closed-loop system, that the strength of cross-phase modulation and two-photon absorption are dependent critically on the relative phase between the excitation paths. By choosing the parameters appropriately, large cross-phase modulation can be achieved within a wide transparency window, while two-photon absorption is cancelled completely. The strength of cross-phase modulation can be enhanced much more by decreasing the intensities of two driven fields.
Resumo:
We propose an asymmetric double AlGaAs/GaAs quantum well structure with a common continuum to generate a large cross-phase modulation (XPM). It is found, owing to resonant tunneling, that a large XPM can be achieved with vanishing linear and two-photon absorptions. (c) 2007 Optical Society of America.