959 resultados para Modified Atlantic Water
Resumo:
Over the past 13 kyr the most significant natural changes in the Reykjanes ridge region took place within 13-7.8 kyr B.P. They resulted from alternating intensifications of the influence of the Labrador (LWM) and Norwegian-Greenland (NGWM) water masses. During 13-11.7 kyr B.P. natural conditions were governed by influence of LWM with sea surface temperature (SST) 3-5°C lower present one. During 11.7-10.3 kyr B.P. NGWM with SST 6-7°C lower present one predominated. During 10.3-9.5 kyr B.P. oceanographic conditions were rapidly transforming and approaching present ones controlled by interaction between LWM and North Atlantic water masses; SST abruptly increased almost to the present value. During 9.5-8.3 kyr B.P. intensification of NGWM led to small decrease of SST (1.5-2.5°C below present value; between 8.3 and 7.8 kyr B.P. natural conditions had approximated present ones and later on remained relatively stable; SST fluctuated with an amplitude of about 1.5°C.
Resumo:
Environmental changes in the surface and bottom water layers of the Ingøydjupet Basin and history of Atlantic water inflow to the southwestern Barents Sea during the last 16 ka are reconstructed on the base of planktic and benthic foraminiferal assemblages. A multiproxy study of sediment cores PSh-5159R and PSh-5159N, including AMS 14C dating, provides time resolution of about 200 years for the deglaciation period, 100 years for Holocene, and 25-50 years for the last 400 years. Stable polar conditions with sea ice on the surface were typical for the early deglaciation period. Unstable bottom settings and onset of ice rafting marked Oldest Dryas. Cold Atlantic water inflow increased notably during the Boiling-Allerod interstadial nearby the site location and then decreased during the Younger Dryas. Early Holocene was characterized by abrupt warming in the bottom and surface water layers, especially ~9.7-7.6 ka BP. Stable conditions prevailed during Middle Holocene. Remarkable changes in the sea-surface temperature and bottom environments occurred during last 2.5 cal. ka BP.
Resumo:
It is shown that sediments accumulated in the Southern Novaya Zemlya Trench at both deglaciation and marine stages. Permanent sea ice sheet existed during the deglaciation, and glacier meltwater was intensely delivered to the bottom layer. Along with the dominant sediment supply from the Southern Island of Novaya Zemlya, southern continental sources also played a noticeable role at that stage. Seasonal sea ice freezing led to the formation of cold brines at the marine stage. Like paleoproductivity, these processes were irregular. Dissolution of calcareous benthic foraminiferal tests considerably intensified after about 7 ka BP owing to a stronger Atlantic water advection into the Western Arctic and consequent increase in paleoproductivity, whereas the relative role of southern sedimentary provenances decreased. Sedimentation rates were constant (45 cm/ka) during the entire marine stage.
Resumo:
he separate roles of oceanic heat advection and orbital forcing on influencing early Holocene temperature variability in the eastern Nordic Seas is investigated. The effect of changing orbital forcing on the ocean temperatures is tested using the 1DICE model, and the 1DICE results are compared with new and previously published temperature reconstructions from a transect of five cores located underneath the pathway of Atlantic water, from the Faroe-Shetland Channel in the south to the Barents Sea in the north. The stronger early Holocene summer insolation at high northern latitudes increased the summer mixed layer temperatures, however, ocean temperatures underneath the summer mixed layer did not increase significantly. The absolute maximum in summer mixed layer temperatures occurred between 9 and 6 ka BP, representing the Holocene Thermal Maximum in the eastern Nordic Seas. In contrast, maximum in northward oceanic heat transport through the Norwegian Atlantic Current occurred approximately 10 ka BP. The maximum in oceanic heat transport at 10 ka BP occurred due to a major reorganization of the Atlantic Ocean circulation, entailing strong and deep rejuvenation of the Atlantic Meridional Overturning Circulation, combined with changes in the North Atlantic gyre dynamic causing enhanced transport of heat and salt into the Nordic Seas.
Resumo:
The last glacial millennial climatic events (i.e. Dansgaard-Oeschger and Heinrich events) constitute outstanding case studies of coupled atmosphere-ocean-cryosphere interactions. Here, we investigate the evolution of sea-surface and subsurface conditions, in terms of temperature, salinity and sea ice cover, at very high-resolution (mean resolution between 55 and 155 years depending on proxies) during the 35-41 ka cal BP interval covering three Dansgaard-Oeschger cycles and including Heinrich event 4, in a new unpublished marine record, i.e. the MD99-2285 core (62.69°N; -3.57s°E). We use a large panel of complementary tools, which notably includes dinocyst-derived sea-ice cover duration quantifications. The high temporal resolution and multiproxy approach of this work allows us to identify the sequence of processes and to assess ocean-cryosphere interactions occurring during these periodic ice-sheet collapse events. Our results evidence a paradoxical hydrological scheme where (i) Greenland interstadials are marked by a homogeneous and cold upper water column, with intensive winter sea ice formation and summer sea ice melting, and (ii) Greenland and Heinrich stadials are characterized by a very warm and low saline surface layer with iceberg calving and reduced sea ice formation, separated by a strong halocline from a less warm and saltier subsurface layer. Our work also suggests that this stadial surface/subsurface warming started before massive iceberg release, in relation with warm Atlantic water advection. These findings thus support the theory that upper ocean warming might have triggered European ice-sheet destabilization. Besides, previous paleoceanographic studies conducted along the Atlantic inflow pathways close to the edge of European ice-sheets suggest that such a feature might have occurred in this whole area. Nonetheless, additional high resolution paleoreconstructions are required to confirm such a regional scheme.
Resumo:
Differences in bioaccumulation of persistent organic pollutants (POPs) between fjords characterized by different water masses were investigated by comparing POP concentrations, patterns and bioaccumulation factors (BAFs) in seven species of zooplankton from Liefdefjorden (Arctic water mass) and Kongsfjorden (Atlantic water mass), Svalbard, Norway. No difference in concentrations and patterns of POPs was observed in seawater and POM; however higher concentrations and BAFs for certain POPs were found in species of zooplankton from Kongsfjorden. The same species were sampled in both fjords and the differences in concentrations of POPs and BAFs were most likely due to fjord specific characteristics, such as ice cover and timing of snow/glacier melt. These confounding factors make it difficult to conclude on water mass (Arctic vs. Atlantic) specific differences and further to extrapolate these results to possible climate change effects on accumulation of POPs in zooplankton. The present study suggests that zooplankton do biomagnify POPs, which is important for understanding contaminant uptake and flux in zooplankton, though consciousness regarding the method of evaluation is important.
Resumo:
Dinocysts from cores collected in the Chukchi Sea from the shelf edge to the lower slope were used to reconstruct changes in sea surface conditions and sea ice cover using modern analogue techniques. Holocene sequences have been recovered in a down-slope core (B15: 2135 m, 75°44'N, sedimentation rate of ~1 cm/kyr) and in a shelf core (P1: 201 m, 73°41'N, sedimentation rate of ~22 cm/kyr). The shelf record spanning about 8000 years suggests high-frequency centennial oscillations of sea surface conditions and a significant reduction of the sea ice at circa 6000 and 2500 calendar (cal) years B.P. The condensed offshore record (B15) reveals an early postglacial optimum with minimum sea ice cover prior to 12,000 cal years B.P., which corresponds to a terrestrial climate optimum in Bering Sea area. Dinocyst data indicate extensive sea ice cover (>10 months/yr) from 12,000 to 6000 cal years B.P. followed by a general trend of decreasing sea ice and increasing sea surface salinity conditions, superimposed on large-amplitude millennial-scale oscillations. In contrast, d18O data in mesopelagic foraminifers (Neogloboquadrina pachyderma) and benthic foraminifers (Cibicides wuellerstorfi) reveal maximum subsurface temperature and thus maximum inflow of the North Atlantic water around 8000 cal years B.P., followed by a trend toward cooling of the subsurface to bottom water masses. Sea-surface to subsurface conditions estimated from dinocysts and d18O data in foraminifers thus suggest a decoupling between the surface water layer and the intermediate North Atlantic water mass with the existence of a sharp halocline and a reverse thermocline, especially before 6000 years B.P. The overall data and sea ice reconstructions from core B15 are consistent with strong sea ice convergence in the western Arctic during the early Holocene as suggested on the basis of climate model experiments including sea ice dynamics, matching a higher inflow rate of North Atlantic Water.
Resumo:
A short sediment core from a local depression forming an intra basin on the Lomonosov Ridge, was retrieved during the Healy-Oden Trans-Arctic Expedition 2005 (HOTRAX). It contains a record of the Marine Isotope Stages (MIS) 1-3 showing exceptionally high abundances of calcareous microfossils during parts of MIS 3. Based on radiocarbon dating, linear sedimentation rates of 7-9 cm/ka persist during the last deglaciation. The Last Glacial Maximum (LGM) is partly characterized by a hiatus. Planktic foraminiferal abundance variations of Neogloboquadrina pachyderma sinistral and calcareous nannofossils reflect changes in Arctic Ocean summer sea ice coverage and probably inflow of subpolar North Atlantic water. Calibration of the radiocarbon ages, using modeled reservoir corrections from previous studies and the microfossil abundance record of the studied core, results in marine reservoir ages of 1400 years or more, at least during the last deglaciation. Paired benthic-planktic radiocarbon dated foraminiferal samples indicate a slow decrease in age difference between surface and bottom waters from the Lateglacial to the Holocene, suggesting circulation and ventilation changes.
Resumo:
Since 2000 long-term measurements of vertical particle flux have been performed with moored sediment traps at the long-term observatory HAUSGARTEN in the eastern Fram Strait (79°N/4°E). The study area, which is seasonally covered with ice, is located in the confluence zone of the northward flowing warm saline Atlantic water with cold, low salinity water masses of Arctic origin. Current projections suggest that this area is particularly vulnerable to global warming. Total matter fluxes and components thereof (carbonate, particulate organic carbon and nitrogen, biogenic silica, biomarkers) revealed a bimodal seasonal pattern showing elevated sedimentation rates during May/June and August/September. Annual total matter flux (dry weight, DW) at ~ 300 m depth varied between 13 and 32 g/m**2/a during 2000 and 2005. Of this total flux 6-13 % was due to CaCO3, 4-21 % to refractory particulate organic carbon (POC), and 3-8 % to biogenic particulate silica (bPSi). The annual flux of all biogenic components together was almost constant during the period studied (8.5-8.8 g/m**2/a), although this varied from 27 to 67 % of the total annual flux. The fraction was lowest in a year characterized by the longest duration of ice coverage (91 and 70 days for the calendar year and summer season, May-September, respectively). Biomarker analyses revealed that organic matter originating from marine sources was present in excess of terrigenious material in the sedimented matter throughout most of the study period. Fluxes of recognizable phyto- and protozooplankton cells amounted up to 60x106 m**2/d. Diatoms and coccolithophorids were the most abundant organisms. Diatoms, mainly pennate species, dominated during the first years of the investigation. A shift in the composition occurred during the last year when numbers of diatoms declined considerably, leading to a dominance of coccolithoporids. This was also reflected in a decrease in the sedimentation of bPSi. The sedimentation of biogenic matter, however, did not differ from the amount observed during the previous years. Among the larger organisms, pteropods at times contributed significantly to both the total matter and CaCO3, fluxes.
Resumo:
Time-series sediment traps were deployed at 4 depths in the eastern Fram Strait from July 2007 to June 2008 to investigate variations in the magnitude and composition of the sinking particulate matter from upper waters to the seafloor. Sediment traps were deployed at 196 m in the Atlantic Water layer, at 1296 and 2364 m in the intermediate and deep waters, and at 2430 m on a benthic lander in the near-bottom layer. Fluxes of total particulate matter, particulate organic carbon, particulate organic nitrogen, biogenic matter, lithogenic matter, biogenic particulate silica, calcium carbonate, dominant phytoplankton cells, and zooplankton fecal pellets increased with depth, indicating the importance of lateral advection on fluxes in the deep Fram Strait. The lateral supply of particulate matter was further supported by the constant fluxes of biomarkers such as brassicasterol, alkenones, campesterol, beta-sitosterol, and IP25 at all depths sampled. However, enhanced fluxes of diatoms and appendicularian fecal pellets from the upper waters to the seafloor in the presence of ice during spring indicated the rapid export (15-35 days) of locally-produced large particles that likely contributed most of the food supply to the benthic communities. These results show that lateral supply and downward fluxes are both important processes influencing the transport of particulate matter to the seafloor in the deep eastern Fram Strait, and that particulate matter size dictates the prevailing sinking process.
Resumo:
During the "RV Polarstem"-Expedition ARK VIII/2 sediment samples were obtained at the continental slope of NW-Spitsbergen. Detailed sedimentological and geochemical analysis were carried out at two undisturbed box cores (PS2122-1GKG, PS2123-2GKG) as well as two gravity cores (PS2122-1SL, PS2123-2SL). The following parameters were deterrnined: Organic carbon, nitrogen and carbonate contents, hydrogen index, stable isotopes, ice rafted debris, grain-size distribution and biogenic opal. The main objective of this study was the reconstruction of paleoenvironmental changes off the northwest coast of Spitsbergen during the last glacial/interglacial-cycle, i.e., during the last about 128.000 years. The results of the investigations can be summarized as follows: - During isotope stage 1 (Holocene) and 5.5 (Eemian Interglacial), light stable isotopes (d180: 3.4-2 %o; d13C: 0.26-0.5 %o), increased bioturbation, high content of planktonic foraminifera and biogenic opal and low quantity of ice-rafted material, indicate seasonally ice-free conditions along the northwest coast due to the intfluence of the Westspitsbergen Current. - Additionally, the sediment characteristics of the middle of isotope stage 2 (Last Glacial Maximum) and at the end of stage 3 confirms an inflow of warmer Atlantic water. The highest production of planktonic and benthic foraminifera (N. pachyderma sin., Cassidulina teretis) (CaC03: 10 %) may reflect the expansion of the 'Whalers Bay'-Polynya as a result of the influence of the Westspitsbergen Current. Presumably, occasionally open-ice conditions provide sufficient precipitation to buildup the Svalbard/Barents Ice Sheet. - The time intervals for the glacier advances on Svalbard given by Mangerud et al. (1992), can be correlated with increased accumulation of ice-rafted material in the sediments at the northwest coast of Spitsbergen. Especially during isotope stage 4 and at the beginning of the Last Glacial Maximum (isotope stage 2), a drastically increased supply of coarse terrigenous material occurs. The high accumulation rate (0.18-0.21 g/cm**2/ka) of terrigenous organic carbon is indicated by high C/N ratios (until 16) and low hydrogen index (50 mg HC/gC). In constrast to deep sea sediments in the Fram-Strait (Hebbeln 1992), the glacier advance between 118.000 and 108.000 years B.P. ist documented in the continental slope sediments. - At the end of the Weichselian ice age, the deglaciation at the northwest coast starts with a typical melt-water signal in the stables isotope record (d18O: 3.5 %o; d13C: -0.16 %o) and high contents of gravel (6-13 %). The signal can be assigned to an event at the westcoast of Spitsbergen (core NP90-39), dated to 14.500 years B.P. (Andersen et al. 1993).
Resumo:
We measured the oxygen isotopic composition of planktonic and benthic foraminifera in three cores collected at key positions to reconstruct the paleoceanography of the Barents Sea: core ASV 880 on the path of the northern branch of Atlantic water inflowing from the Arctic Ocean, core ASV 1200 in the central basin near the polar front, and core ASV 1157 in the main area of brine formation. Modern seawater d18O measurements show that far from the coast, d18O variations are linearly linked to the salinity changes associated with sea ice melting. The foraminifer d18O records are dated by 14C measurements performed on mollusk shells, and they provide a detailed reconstruction of the paleoceanographic evolution of the Barents Sea during the Holocene. Four main steps were recognized: the terminal phase of the deglaciation with melting of the main glaciers, which were located on the surrounding continent and islands, the short thermal optimum from 7.8 ka B.P. to 6.8 ka B.P., a cold mid-Holocene phase with a large reduction of the inflow of Atlantic water, and the inception of the modern hydrological pattern by 4.7 ka B.P. Brine water formation was active during the whole Holocene. The paleoclimatic evolution of the Barents Sea was driven by both high-latitude summer insolation and the intensity of the Atlantic water inflow.
Resumo:
Planktonic foraminifera populations were studied throughout the top 25 meters of the IODP ACEX 302 Hole 4C from the central Arctic Ocean at a resolution varying from 5cm (at the top of the record) to 10cm. Planktonic foraminifera occur in high absolute abundances only in the uppermost fifty centimetres and are dominated by the taxa Neogloboquadrina pachyderma. Except for a few intermittent layers below this level,most samples are barren of calcareous microfossils.Within the topmost sediments, Neogloboquadrina pachyderma specimens present large morphological variability in the shape and number of chambers in the finalwhorl, chamber sphericity, size, and coiling direction. Five morphotypeswere identified among the sinistral (sin.) population (Nps-1 to Nps-5), including a small form (Nps-5) that is similar to a non-encrusted normal form also previously identified in the modern Arctic Ocean watermasses. Twenty five percent of the sinistral population is made up by large specimens (Nps-2, 3, 4), with a maximal mean diameter larger than 250µm. Following observations made in peri-Arctic seas (Hillaire-Marcel et al. 2004, doi:10.1016/j.quascirev.2003.08.006), we propose that occurrence of these large-sized specimens of N. pachyderma (sin.) in the central Arctic Ocean sediments could sign North Atlantic water sub-surface penetration.
Resumo:
Composition and accumulation rates of organic carbon in Holocene sediments provided data to calculate an organic carbon budget for the Laptev Sea continental margin. Mean Holocene accumulation rates in the inner Laptev Sea vary between 0.14 and 2.7 g C cm**2/ky; maximum values occur close to the Lena River delta. Seawards, the mean accumulation rates decrease from 0.43 to 0.02 g C cm**2/ky. The organic matter is predominantly of terrigenous origin. About 0.9*10**6 t/year of organic carbon are buried in the Laptev Sea, and 0.25*10**6 t/year on the continental slope. Between about 8.5 and 9 ka, major changes in supply of terrigenous and marine organic carbon occur, related to changes in coastal erosion, Siberian river discharge, and/or Atlantic water inflow along the Eurasian continental margin.