977 resultados para Modeling complexity
Resumo:
Gaussian mixture models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner particularly when computational resources are limited. A method of combining vector quantization (VQ) with single multi-dimensional Gaussians is proposed to rapidly generate a robust model approximation to the Gaussian mixture model. A fast method of testing these systems is also proposed and implemented. Results on the NIST 1996 Speaker Recognition Database suggest comparable and in some cases an improved verification performance to the traditional GMM based analysis scheme. In addition, previous research for the task of speaker identification indicated a similar system perfomance between the VQ Gaussian based technique and GMMs
Resumo:
In the multi-view approach to semisupervised learning, we choose one predictor from each of multiple hypothesis classes, and we co-regularize our choices by penalizing disagreement among the predictors on the unlabeled data. We examine the co-regularization method used in the co-regularized least squares (CoRLS) algorithm, in which the views are reproducing kernel Hilbert spaces (RKHS's), and the disagreement penalty is the average squared difference in predictions. The final predictor is the pointwise average of the predictors from each view. We call the set of predictors that can result from this procedure the co-regularized hypothesis class. Our main result is a tight bound on the Rademacher complexity of the co-regularized hypothesis class in terms of the kernel matrices of each RKHS. We find that the co-regularization reduces the Rademacher complexity by an amount that depends on the distance between the two views, as measured by a data dependent metric. We then use standard techniques to bound the gap between training error and test error for the CoRLS algorithm. Experimentally, we find that the amount of reduction in complexity introduced by co regularization correlates with the amount of improvement that co-regularization gives in the CoRLS algorithm.
Resumo:
Despite many incidents about fake online consumer reviews have been reported, very few studies have been conducted to date to examine the trustworthiness of online consumer reviews. One of the reasons is the lack of an effective computational method to separate the untruthful reviews (i.e., spam) from the legitimate ones (i.e., ham) given the fact that prominent spam features are often missing in online reviews. The main contribution of our research work is the development of a novel review spam detection method which is underpinned by an unsupervised inferential language modeling framework. Another contribution of this work is the development of a high-order concept association mining method which provides the essential term association knowledge to bootstrap the performance for untruthful review detection. Our experimental results confirm that the proposed inferential language model equipped with high-order concept association knowledge is effective in untruthful review detection when compared with other baseline methods.
Resumo:
This study aimed to explore resilience and wellbeing among a group of eight refugee women originating from several countries (mainly African) and living in Brisbane, most of whom were single mothers. To challenge mostly quantitative and gender-blind explorations of mental health concepts among refugee groups, the project sought an emic and contextual understanding of resilience and wellbeing. Established perspectives, while useful, tend to overlook the complexities of refugee mental health experiences and can neglect the dense nature of individual stories. The purpose of my study was to contest relatively simplistic narratives of mental health constructs that tend to dominate migrant and refugee studies and influence practice paradigms in the human services field. In this ethnographic exploration of mental health constructs conducted in 2008 and 2009, the use of in-depth interviews, participant observations, and visual ethnographic elements provided an opportunity for refugee women to tell their own stories. The participants’ unique narratives of pre- and post-migration experiences, shaped by specific gender, age, social, cultural and political aspects prevailing in their lives, yielded ‘thick’ ethnographic description (Geertz, 1973) of their social worlds. The findings explored in this study, namely language issues, the impact of community dynamics, and the single status of refugee women, clearly demonstrate that mental health constructs are fluid, multifaceted and complex in reality. In fact, language, community dynamics, and being a single mother, represented both opportunities and barriers in the lives of participants. In some contexts, these factors were conducive to resilience and wellbeing, while in other circumstances, these three elements acted as a hindrance to positive mental health outcomes. There are multiple dimensions to the findings, signifying that the social worlds of refugee women cannot be simplified using set definitions and neat notions of resilience and wellbeing. Instead, the intricacies and complexities embedded in the mundane of the everyday highlight novel conceptualisations of resilience and wellbeing. Based on the particular circumstances of single refugee mothers, whose experiences differ from that of married women, this thesis presents novel articulations of mental health constructs, as an alternative view to existing trends in the literature on refugee issues. Rich and multi-dimensional meanings associated with the socio-cultural determinants of mental health emerged in the process. This thesis’ findings highlight a significant gap in diasporic studies as well as simplistic assumptions about refugee women’s resettlement experiences. Single refugee women’s distinct issues are so complex and dense, that a contextual approach is critical to yield accurate depictions of their circumstances. It is therefore essential to understand refugee lived experiences within broader socio-political contexts to truly appreciate the depth of these narratives. In this manner, critical aspects salient to refugee journeys can inform different understandings of resilience, wellbeing and mental health, and shape contemporary policy and human service practice paradigms.
Resumo:
Delays are an important feature in temporal models of genetic regulation due to slow biochemical processes, such as transcription and translation. In this paper, we show how to model intrinsic noise effects in a delayed setting by either using a delay stochastic simulation algorithm (DSSA) or, for larger and more complex systems, a generalized Binomial τ-leap method (Bτ-DSSA). As a particular application, we apply these ideas to modeling somite segmentation in zebra fish across a number of cells in which two linked oscillatory genes (her1 and her7) are synchronized via Notch signaling between the cells.
Resumo:
Conceptual modeling continues to be an important means for graphically capturing the requirements of an information system. Observations of modeling practice suggest that modelers often use multiple modeling grammars in combination to articulate various aspects of real-world domains. We extend an ontological theory of representation to suggest why and how users employ multiple conceptual modeling grammars in combination. We provide an empirical test of the extended theory using survey data and structured interviews about the use of traditional and structured analysis grammars within an automated tool environment. We find that users of the analyzed tool combine grammars to overcome the ontological incompleteness that exists in each grammar. Users further selected their starting grammar from a predicted subset of grammars only. The qualitative data provides insights as to why some of the predicted deficiencies manifest in practice differently than predicted.
Resumo:
Experimental action potential (AP) recordings in isolated ventricular myoctes display significant temporal beat-to-beat variability in morphology and duration. Furthermore, significant cell-to-cell differences in AP also exist even for isolated cells originating from the same region of the same heart. However, current mathematical models of ventricular AP fail to replicate the temporal and cell-to-cell variability in AP observed experimentally. In this study, we propose a novel mathematical framework for the development of phenomenological AP models capable of capturing cell-to-cell and temporal variabilty in cardiac APs. A novel stochastic phenomenological model of the AP is developed, based on the deterministic Bueno-Orovio/Fentonmodel. Experimental recordings of AP are fit to the model to produce AP models of individual cells from the apex and the base of the guinea-pig ventricles. Our results show that the phenomenological model is able to capture the considerable differences in AP recorded from isolated cells originating from the location. We demonstrate the closeness of fit to the available experimental data which may be achieved using a phenomenological model, and also demonstrate the ability of the stochastic form of the model to capture the observed beat-to-beat variablity in action potential duration.