892 resultados para Modeling and Simulation Challenges
Resumo:
Emergency departments are and will be at the front line to face the forthcoming increased use of the health care system by the aging baby boomers cohort. Emergency department services will need to adjust on a quantitative as well as on a qualitative basis to manage the impact of these demographic changes. Various models of care have been developed to improve the care of older geriatric patients in the Emergency department that resulted in favorable results on functional, health, as well as health services utilization outcomes. Key components of these successful models have been identified that require a high level of integration between geriatric and emergency teams.
Resumo:
We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.
Resumo:
The Voxel Imaging PET (VIP) Path nder project got the 4 year European Research Council FP7 grant in 2010 to prove the feasibility of using CdTe detectors in a novel conceptual design of PET scanner. The work presented in this thesis is a part of the VIP project and consists of, on the one hand, the characterization of a CdTe detector in terms of energy resolution and coincidence time resolution and, on the other hand, the simulation of the setup with the single detector in order to extend the results to the full PET scanner. An energy resolution of 0.98% at 511 keV with a bias voltage of 1000 V/mm has been measured at low temperature T=-8 ºC. The coincidence time distribution of two twin detectors has been found to be as low as 6 ns FWHM for events with energies above 500 keV under the same temperature and bias conditions. The measured energy and time resolution values are compatible with similar ndings available in the literature and prove the excellent potential of CdTe for PET applications. This results have been presented in form of a poster contribution at the IEEE NSS/MIC & RTSD 2011 conference in October 2011 in Valencia and at the iWoRID 2012 conference in July 2012 in Coimbra, Portugal. They have been also submitted for publication to "Journal of Instrumentation (JINST)" in September 2012.
Resumo:
Microparticles are phospholipid vesicles shed mostly in biological fluids, such as blood or urine, by various types of cells, such as red blood cells (RBCs), platelets, lymphocytes, endothelial cells. These microparticles contain a subset of the proteome of their parent cell, and their ready availability in biological fluid has raised strong interest in their study, as they might be markers of cell damage. However, their small size as well as their particular physico-chemical properties makes them hard to detect, size, count and study by proteome analysis. In this review, we report the pre-analytical and methodological caveats that we have faced in our own research about red blood cell microparticles in the context of transfusion science, as well as examples from the literature on the proteomics of various kinds of microparticles.
Resumo:
Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.
Resumo:
Cefepime is a broad-spectrum cephalosporin indicated for in-hospital treatment of severe infections. Acute neurotoxicity, an increasingly recognized adverse effect of this drug in an overdose, predominantly affects patients with reduced renal function. Although dialytic approaches have been advocated to treat this condition, their role in this indication remains unclear. We report the case of an 88-year-old female patient with impaired renal function who developed life-threatening neurologic symptoms during cefepime therapy. She was treated with two intermittent 3-hour high-flux, high-efficiency hemodialysis sessions. Serial pre-, post-, and peridialytic (pre- and postfilter) serum cefepime concentrations were measured. Pharmacokinetic modeling showed that this dialytic strategy allowed for serum cefepime concentrations to return to the estimated nontoxic range 15 hours earlier than would have been the case without an intervention. The patient made a full clinical recovery over the next 48 hours. We conclude that at least 1 session of intermittent hemodialysis may shorten the time to return to the nontoxic range in severe clinically patent intoxication. It should be considered early in its clinical course pending chemical confirmation, even in frail elderly patients. Careful dosage adjustment and a high index of suspicion are essential in this population.
Resumo:
In this paper we show that the orthorhombic phase of FeSi2 (stable at room temperature) displays a sizable anisotropy in the infrared spectra, with minor effects in the Raman data too. This fact is not trivial at all, since the crystal structure corresponds to a moderate distortion of the fluorite symmetry. Our analysis is carried out on small single crystals grown by flux transport, through polarization-resolved far-infrared reflectivity and Raman measurements. Their interpretation has been obtained by means of the simulated spectra with tight-binding molecular dynamics.
Resumo:
A previous study sponsored by the Smart Work Zone Deployment Initiative, “Feasibility of Visualization and Simulation Applications to Improve Work Zone Safety and Mobility,” demonstrated the feasibility of combining readily available, inexpensive software programs, such as SketchUp and Google Earth, with standard two-dimensional civil engineering design programs, such as MicroStation, to create animations of construction work zones. The animations reflect changes in work zone configurations as the project progresses, representing an opportunity to visually present complex information to drivers, construction workers, agency personnel, and the general public. The purpose of this study is to continue the work from the previous study to determine the added value and resource demands created by including more complex data, specifically traffic volume, movement, and vehicle type. This report describes the changes that were made to the simulation, including incorporating additional data and converting the simulation from a desktop application to a web application.
Resumo:
We review recent results on dynamical aspects of viscous fingering. The Saffman¿Taylor instability is studied beyond linear stability analysis by means of a weakly nonlinear analysis and the exact determination of the subcritical branch. A series of contributions pursuing the idea of a dynamical solvability scenario associated to surface tension in analogy with the traditional selection theory is put in perspective and discussed in the light of the asymptotic theory of Tanveer and co-workers. The inherently dynamical singular effects of surface tension are clarified. The dynamical role of viscosity contrast is explored numerically. We find that the basin of attraction of the Saffman¿Taylor finger depends on viscosity contrast, and that the sensitivity to this parameter is maximal in the usual limit of high viscosity contrast. The competing attractors are identified as closed bubble solutions. We briefly report on recent results and work in progress concerning rotating Hele-Shaw flows, topological singularities and wetting effects, and also discuss future directions in the context of viscous fingering
Resumo:
Diagnosis and decisions on life-sustaining treatment (LST) in disorders of consciousness, such as the vegetative state (VS) and the minimally conscious state (MCS), are challenging for neurologists. The locked-in syndrome (LiS) is sometimes confounded with these disorders by less experienced physicians. We aimed to investigate (1) the application of diagnostic knowledge, (2) attitudes concerning limitations of LST, and (3) further challenging aspects in the care of patients. A vignette-based online survey with a randomized presentation of a VS, MCS, or LiS case scenario was conducted among members of the German Society for Neurology. A sample of 503 neurologists participated (response rate 16.4%). An accurate diagnosis was given by 86% of the participants. The LiS case was diagnosed more accurately (94%) than the VS case (79%) and the MCS case (87%, p < 0.001). Limiting LST for the patient was considered by 92, 91, and 84% of the participants who accurately diagnosed the VS, LiS, and MCS case (p = 0.09). Overall, most participants agreed with limiting cardiopulmonary resuscitation; a minority considered limiting artificial nutrition and hydration. Neurologists regarded the estimation of the prognosis and determination of the patients' wishes as most challenging. The majority of German neurologists accurately applied the diagnostic categories VS, MCS, and LiS to case vignettes. Their attitudes were mostly in favor of limiting life-sustaining treatment and slightly differed for MCS as compared to VS and LiS. Attitudes toward LST strongly differed according to circumstances (e.g., patient's will opposed treatment) and treatment measures.
Resumo:
The self-intermediate dynamic structure factor Fs(k,t) of liquid lithium near the melting temperature is calculated by molecular dynamics. The results are compared with the predictions of several theoretical approaches, paying special attention to the Lovesey model and the Wahnstrm and Sjgren mode-coupling theory. To this end the results for the Fs(k,t) second memory function predicted by both models are compared with the ones calculated from the simulations.