913 resultados para Model predictive control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of tendons for the transmission of the forces and the movements in robotic devices has been investigated from several researchers all over the world. The interest in this kind of actuation modality is based on the possibility of optimizing the position of the actuators with respect to the moving part of the robot, in the reduced weight, high reliability, simplicity in the mechanic design and, finally, in the reduced cost of the resulting kinematic chain. After a brief discussion about the benefits that the use of tendons can introduce in the motion control of a robotic device, the design and control aspects of the UB Hand 3 anthropomorphic robotic hand are presented. In particular, the tendon-sheaths transmission system adopted in the UB Hand 3 is analyzed and the problem of force control and friction compensation is taken into account. The implementation of a tendon based antagonistic actuated robotic arm is then investigated. With this kind of actuation modality, and by using transmission elements with nonlinear force/compression characteristic, it is possible to achieve simultaneous stiffness and position control, improving in this way the safety of the device during the operation in unknown environments and in the case of interaction with other robots or with humans. The problem of modeling and control of this type of robotic devices is then considered and the stability analysis of proposed controller is reported. At the end, some tools for the realtime simulation of dynamic systems are presented. This realtime simulation environment has been developed with the aim of improving the reliability of the realtime control applications both for rapid prototyping of controllers and as teaching tools for the automatic control courses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Short-acting agents for neuromuscular block (NMB) require frequent dosing adjustments for individual patient's needs. In this study, we verified a new closed-loop controller for mivacurium dosing in clinical trials. METHODS: Fifteen patients were studied. T1% measured with electromyography was used as input signal for the model-based controller. After induction of propofol/opiate anaesthesia, stabilization of baseline electromyography signal was awaited and a bolus of 0.3 mg kg-1 mivacurium was then administered to facilitate endotracheal intubation. Closed-loop infusion was started thereafter, targeting a neuromuscular block of 90%. Setpoint deviation, the number of manual interventions and surgeon's complaints were recorded. Drug use and its variability between and within patients were evaluated. RESULTS: Median time of closed-loop control for the 11 patients included in the data processing was 135 [89-336] min (median [range]). Four patients had to be excluded because of sensor problems. Mean absolute deviation from setpoint was 1.8 +/- 0.9 T1%. Neither manual interventions nor complaints from the surgeons were recorded. Mean necessary mivacurium infusion rate was 7.0 +/- 2.2 microg kg-1 min-1. Intrapatient variability of mean infusion rates over 30-min interval showed high differences up to a factor of 1.8 between highest and lowest requirement in the same patient. CONCLUSIONS: Neuromuscular block can precisely be controlled with mivacurium using our model-based controller. The amount of mivacurium needed to maintain T1% at defined constant levels differed largely between and within patients. Closed-loop control seems therefore advantageous to automatically maintain neuromuscular block at constant levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a thermal separation method, distillation is one of the most important technologies in the chemical industry. Given its importance, it is no surprise that increasing efforts have been made in reducing its energy inefficiencies. A great deal of research is focused in the design and optimization of the Divided-Wall Column. Its applications are still reduced due to distrust of its controllability. Previous references studied the decentralized control of DWC but still few papers deal about Model Predictive Control. In this work we present a decentralized control of both a DWC column along with its equivalent MPC schema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasingly in power systems, there is a trend towards the sharing of reserves and integration of markets over wide areas in order to enable increased penetration of renewable sources in interconnected power systems. In this paper, a number of simple PI and gain based Model Predictive Control algorithms are proposed for Automatic Generation Control in AC areas connected to Multi-Terminal Direct Current grids. The paper discusses how this approach improves the sharing of secondary reserves and could assist in achieving EU energy targets for 2030 and beyond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The horticultural sector has become an increasingly important sector of food production, for which greenhouse climate control plays a vital role in improving its sustainability. One of the methods to control the greenhouse climate is Model Predictive Control, which can be optimized through a branch and bound algorithm. The application of the algorithm in literature is examined and analyzed through small examples, and later extended to greenhouse climate simulation. A comparison is made of various alternative objective functions available in literature. Subsequently, a modidified version of the B&B algorithm is presented, which reduces the number of node evaluations required for optimization. Finally, three alternative algorithms are developed and compared to consider the optimization problem from a discrete to a continuous control space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water column for such extended deployments. We present a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy and enables general control for these profiling floats. The proposed method is based on experimentally validated techniques for utilizing ocean current models to control autonomous gliders. With the appropriate vertical actuation, and utilizing spatio–temporal variations in water speed and direction, we show that general controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution. A computed depth plan is generated with a model-predictive controller (MPC), and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA, USA, that show encouraging results in the ability of a drifting vehicle to reach a desired location.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an algorithm for ``direct numerical integration'' of the initial value Differential-Algebraic Inequalities (DAI) in a time stepping fashion using a sequential quadratic programming (SQP) method solver for detecting and satisfying active path constraints at each time step. The activation of a path constraint generally increases the condition number of the active discretized differential algebraic equation's (DAE) Jacobian and this difficulty is addressed by a regularization property of the alpha method. The algorithm is locally stable when index 1 and index 2 active path constraints and bounds are active. Subject to available regularization it is seen to be stable for active index 3 active path constraints in the numerical examples. For the high index active path constraints, the algorithm uses a user-selectable parameter to perturb the smaller singular values of the Jacobian with a view to reducing the condition number so that the simulation can proceed. The algorithm can be used as a relatively cheaper estimation tool for trajectory and control planning and in the context of model predictive control solutions. It can also be used to generate initial guess values of optimization variables used as input to inequality path constrained dynamic optimization problems. The method is illustrated with examples from space vehicle trajectory and robot path planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The architecture of model predictive control (MPC), with its explicit internal model and constrained optimization is presented. Since MPC relies on an explicit internal model, one can imagine dealing with failures by updating the internal model, and letting the on-line optimizer work out how to control the system in its new condition. This aspects rely on assumptions such that the nature of the fault can be located, and the model can be updated automatically. A standard form of MPC, with linear inequality constraints on inputs and outputs, linear internal model, and quadriatic cost function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The various aspects of fault-tolerant control systems that have the ability to survive major equipment failures or damages are discussed. Model predictive control (MPC) offers a promising basis for fault-tolerant control. Failures can be dealt with by updating internal models and letting the on-line optimizer control the system in its new condition. Fault detection and isolation (FDI) and the management of complex models are two emerging technologies in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of a project aimed at minimising fuel usage while maximising steam availability in the power and steam plant of a large newsprint mill. The approach taken was to utilise the better regulation and plant wide optimisation capabilities of Advanced Process Control, especially Model Predictive Control (MPC) techniques. These have recently made their appearance in the pulp and paper industry but are better known in the oil and petrochemical industry where they have been used for nearly 30 years. The issue in the power and steam plant is to ensure that sufficient steam is available when the paper machines require it and yet not to have to waste too much steam when one or more of the machines suffers an outage. This is a problem for which MPC is well suited. It allows variables to be kept within declared constraint ranges, a feature which has been used, effectively, to increase the steam storage capacity of the existing plant. This has resulted in less steam being condensed when it is not required and in significant reductions in the need for supplementary firing. The incidence of steam being dump-condensed while also supplementary firing the Combined Heat & Power (CHP) plant has been reduced by 95% and the overall use of supplementary firing is less than 30% of what it was. In addition the plant runs more smoothly and requires less operator time. The yearly benefit provided by the control system is greater than £200,000, measured in terms of 2005 gas prices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new formulation of variable horizon model predictive control (VH-MPC) that utilises move blocking for reducing computational complexity. Various results pertaining to move blocking are derived, following which, a generalised blocked VH-MPC controller is formulated for linear discrete-time systems. Robustness to bounded disturbances is ensured through the use of tightened constraints. The resulting time-varying control scheme is shown to guarantee robust recursive feasibility and finite-time completion. An example is then presented for a particular choice of blocking regime, as would be applicable to vehicle manœuvring problems. Simulations demonstrate the efficacy of the formulation. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of calculating the minimum lap or maneuver time of a nonlinear vehicle, which is linearized at each time step, is formulated as a convex optimization problem. The formulation provides an alternative to previously used quasi-steady-state analysis or nonlinear optimization. Key steps are: the use of model predictive control; expressing the minimum time problem as one of maximizing distance traveled along the track centerline; and linearizing the track and vehicle trajectories by expressing them as small displacements from a fixed reference. A consequence of linearizing the vehicle dynamics is that nonoptimal steering control action can be generated, but attention to the constraints and the cost function minimizes the effect. Optimal control actions and vehicle responses for a 90 deg bend are presented and compared to the nonconvex nonlinear programming solution. Copyright © 2013 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent theoretical frameworks such as optimal feedback control suggest that feedback gains should modulate throughout a movement and be tuned to task demands. Here we measured the visuomotor feedback gain throughout the course of movements made to "near" or "far" targets in human subjects. The visuomotor gain showed a systematic modulation over the time course of the reach, with the gain peaking at the middle of the movement and dropping rapidly as the target is approached. This modulation depends primarily on the proportion of the movement remaining, rather than hand position, suggesting that the modulation is sensitive to task demands. Model-predictive control suggests that the gains should be continuously recomputed throughout a movement. To test this, we investigated whether feedback gains update when the task goal is altered during a movement, that is when the target of the reach jumped. We measured the visuomotor gain either simultaneously with the jump or 100 ms after the jump. The visuomotor gain nonspecifically reduced for all target jumps when measured synchronously with the jump. However, the visuomotor gain 100 ms later showed an appropriate modulation for the revised task goal by increasing for jumps that increased the distance to the target and reducing for jumps that decreased the distance. We conclude that visuomotor feedback gain shows a temporal evolution related to task demands and that this evolution can be flexibly recomputed within 100 ms to accommodate online modifications to task goals.