896 resultados para Mobile Computing
Resumo:
Mobile and wireless networks have long exploited mobility predictions, focused on predicting the future location of given users, to perform more efficient network resource management. In this paper, we present a new approach in which we provide predictions as a probability distribution of the likelihood of moving to a set of future locations. This approach provides wireless services a greater amount of knowledge and enables them to perform more effectively. We present a framework for the evaluation of this new type of predictor, and develop 2 new predictors, HEM and G-Stat. We evaluate our predictors accuracy in predicting future cells for mobile users, using two large geolocation data sets, from MDC [11], [12] and Crawdad [13]. We show that our predictors can successfully predict with as low as an average 2.2% inaccuracy in certain scenarios.
Resumo:
The rapid growth in the number of online services leads to an increasing number of different digital identities each user needs to manage. As a result, many people feel overloaded with credentials, which in turn negatively impact their ability to manage them securely. Passwords are perhaps the most common type of credential used today. To avoid the tedious task of remembering difficult passwords, users often behave less securely by using low entropy and weak passwords. Weak passwords and bad password habits represent security threats to online services. Some solutions have been developed to eliminate the need for users to create and manage passwords. A typical solution is based on giving the user a hardware token that generates one-time-passwords, i.e. passwords for single session or transaction usage. Unfortunately, most of these solutions do not satisfy scalability and/or usability requirements, or they are simply insecure. In this paper, we propose a scalable OTP solution using mobile phones and based on trusted computing technology that combines enhanced usability with strong security.
Resumo:
Web applications such as blogs, wikis, video and photo sharing sites, and social networking systems have been termed ‘Web 2.0’ to highlight an arguably more open, collaborative, personalisable, and therefore more participatory internet experience than what had previously been possible. Giving rise to a culture of participation, an increasing number of these social applications are now available on mobile phones where they take advantage of device-specific features such as sensors, location and context awareness. This international volume of book chapters will make a contribution towards exploring and better understanding the opportunities and challenges provided by tools, interfaces, methods and practices of social and mobile technology that enable participation and engagement. It brings together an international group of academics and practitioners from a diverse range of disciplines such as computing and engineering, social sciences, digital media and human-computer interaction to critically examine a range of applications of social and mobile technology, such as social networking, mobile interaction, wikis, twitter, blogging, virtual worlds, shared displays and urban sceens, and their impact to foster community activism, civic engagement and cultural citizenship.
Resumo:
The increasing capability of mobile devices and social networks to gather contextual and social data has led to increased interest in context-aware computing for mobile applications. This paper explores ways of reconciling two different viewpoints of context, representational and interactional, that have arisen respectively from technical and social science perspectives on context-aware computing. Through a case study in agile ridesharing, the importance of dynamic context control, historical context and broader context is discussed. We build upon earlier work that has sought to address the divide by further explicating the problem in the mobile context and expanding on the design approaches.
Resumo:
One of the most challenging problems in mobile broadband networks is how to assign the available radio resources among the different mobile users. Traditionally, research proposals are either speci c to some type of traffic or deal with computationally intensive algorithms aimed at optimizing the delivery of general purpose traffic. Consequently, commercial networks do not incorporate these mechanisms due to the limited hardware resources at the mobile edge. Emerging 5G architectures introduce cloud computing principles to add flexible computational resources to Radio Access Networks. This paper makes use of the Mobile Edge Computing concepts to introduce a new element, denoted as Mobile Edge Scheduler, aimed at minimizing the mean delay of general traffic flows in the LTE downlink. This element runs close to the eNodeB element and implements a novel flow-aware and channel-aware scheduling policy in order to accommodate the transmissions to the available channel quality of end users.
Resumo:
Questa tesi si focalizza sulle possibili tecnologie per realizzare comunicazioni opportunistiche fra dispositivi mobile ed embedded, con l'obiettivo di integrarle nel contesto di sistemi a larga scala situati, e con particolare riferimento al prototipo denominato "Magic Carpet". Vengono considerate in particolare le tecnologie WiFi ad-hoc e Bluetooth Low Energy su Android e Raspberry Pi.
Resumo:
Mobile devices are now capable of supporting a wide range of applications, many of which demand an ever increasing computational power. To this end, mobile cloud computing (MCC) has been proposed to address the limited computation power, memory, storage, and energy of such devices. An important challenge in MCC is to guarantee seamless discovery of services. To this end, this thesis proposes an architecture that provides user-transparent and low-latency service discovery, as well as automated service selection. Experimental results on a real cloud computing testbed demonstrated that the proposed work outperforms state of-the-art approaches by achieving extremely low discovery delay.
Resumo:
The development of applications as well as the services for mobile systems faces a varied range of devices with very heterogeneous capabilities whose response times are difficult to predict. The research described in this work aims to respond to this issue by developing a computational model that formalizes the problem and that defines adjusting computing methods. The described proposal combines imprecise computing strategies with cloud computing paradigms in order to provide flexible implementation frameworks for embedded or mobile devices. As a result, the imprecise computation scheduling method on the workload of the embedded system is the solution to move computing to the cloud according to the priority and response time of the tasks to be executed and hereby be able to meet productivity and quality of desired services. A technique to estimate network delays and to schedule more accurately tasks is illustrated in this paper. An application example in which this technique is experimented in running contexts with heterogeneous work loading for checking the validity of the proposed model is described.
Resumo:
In this project, we propose the implementation of a 3D object recognition system which will be optimized to operate under demanding time constraints. The system must be robust so that objects can be recognized properly in poor light conditions and cluttered scenes with significant levels of occlusion. An important requirement must be met: the system must exhibit a reasonable performance running on a low power consumption mobile GPU computing platform (NVIDIA Jetson TK1) so that it can be integrated in mobile robotics systems, ambient intelligence or ambient assisted living applications. The acquisition system is based on the use of color and depth (RGB-D) data streams provided by low-cost 3D sensors like Microsoft Kinect or PrimeSense Carmine. The range of algorithms and applications to be implemented and integrated will be quite broad, ranging from the acquisition, outlier removal or filtering of the input data and the segmentation or characterization of regions of interest in the scene to the very object recognition and pose estimation. Furthermore, in order to validate the proposed system, we will create a 3D object dataset. It will be composed by a set of 3D models, reconstructed from common household objects, as well as a handful of test scenes in which those objects appear. The scenes will be characterized by different levels of occlusion, diverse distances from the elements to the sensor and variations on the pose of the target objects. The creation of this dataset implies the additional development of 3D data acquisition and 3D object reconstruction applications. The resulting system has many possible applications, ranging from mobile robot navigation and semantic scene labeling to human-computer interaction (HCI) systems based on visual information.
Resumo:
This thesis presents the formal definition of a novel Mobile Cloud Computing (MCC) extension of the Networked Autonomic Machine (NAM) framework, a general-purpose conceptual tool which describes large-scale distributed autonomic systems. The introduction of autonomic policies in the MCC paradigm has proved to be an effective technique to increase the robustness and flexibility of MCC systems. In particular, autonomic policies based on continuous resource and connectivity monitoring help automate context-aware decisions for computation offloading. We have also provided NAM with a formalization in terms of a transformational operational semantics in order to fill the gap between its existing Java implementation NAM4J and its conceptual definition. Moreover, we have extended NAM4J by adding several components with the purpose of managing large scale autonomic distributed environments. In particular, the middleware allows for the implementation of peer-to-peer (P2P) networks of NAM nodes. Moreover, NAM mobility actions have been implemented to enable the migration of code, execution state and data. Within NAM4J, we have designed and developed a component, denoted as context bus, which is particularly useful in collaborative applications in that, if replicated on each peer, it instantiates a virtual shared channel allowing nodes to notify and get notified about context events. Regarding the autonomic policies management, we have provided NAM4J with a rule engine, whose purpose is to allow a system to autonomously determine when offloading is convenient. We have also provided NAM4J with trust and reputation management mechanisms to make the middleware suitable for applications in which such aspects are of great interest. To this purpose, we have designed and implemented a distributed framework, denoted as DARTSense, where no central server is required, as reputation values are stored and updated by participants in a subjective fashion. We have also investigated the literature regarding MCC systems. The analysis pointed out that all MCC models focus on mobile devices, and consider the Cloud as a system with unlimited resources. To contribute in filling this gap, we defined a modeling and simulation framework for the design and analysis of MCC systems, encompassing both their sides. We have also implemented a modular and reusable simulator of the model. We have applied the NAM principles to two different application scenarios. First, we have defined a hybrid P2P/cloud approach where components and protocols are autonomically configured according to specific target goals, such as cost-effectiveness, reliability and availability. Merging P2P and cloud paradigms brings together the advantages of both: high availability, provided by the Cloud presence, and low cost, by exploiting inexpensive peers resources. As an example, we have shown how the proposed approach can be used to design NAM-based collaborative storage systems based on an autonomic policy to decide how to distribute data chunks among peers and Cloud, according to cost minimization and data availability goals. As a second application, we have defined an autonomic architecture for decentralized urban participatory sensing (UPS) which bridges sensor networks and mobile systems to improve effectiveness and efficiency. The developed application allows users to retrieve and publish different types of sensed information by using the features provided by NAM4J's context bus. Trust and reputation is managed through the application of DARTSense mechanisms. Also, the application includes an autonomic policy that detects areas characterized by few contributors, and tries to recruit new providers by migrating code necessary to sensing, through NAM mobility actions.
Resumo:
This paper describes the use of Bluetooth and Java-Based technologies in developing a multi-player mobile game in ubiquitous computing, which strongly depends on automatic contextual reconfiguration and context-triggered actions. Our investigation focuses on an extended form of ubiquitous computing which game software developers utilize to develop games for players. We have developed an experimental ubiquitous computing application that provides context-aware services to game server and game players in a mobile distributed computing system. Obviously, contextual services provide useful information in a context-aware system. However, designing a context-aware game is still a daunting task and much theoretical and practical research remains to be done to reach the ubiquitous computing era. In this paper, we present the overall architecture and discuss, in detail, the implementation steps taken to create a Bluetooth and Java based context-aware game. We develop a multi-player game server and prepare the client and server codes in ubiquitous computing, providing adaptive routines to handle connection information requests, logging and context formatting and delivery for automatic contextual reconfiguration and context-triggered actions. © 2010 Binary Information Press.
Resumo:
110 p.
Resumo:
The increasing dependency of everyday life on mobile devices also increases the number and complexity of computing tasks to be supported by these devices. However, the inherent requirement of mobility restricts them from being resources rich both in terms of energy (battery capacity) and other computing resources such as processing capacity, memory and other resources. This thesis looks into cyber foraging technique of offloading computing tasks. Various experiments on android mobile devices are carried out to evaluate offloading benefits in terms of sustainability advantage, prolonging battery life and augmenting the performance of mobile devices. This thesis considers two scenarios of cyber foraging namely opportunistic offloading and competitive offloading. These results show that the offloading scenarios are important for both green computing and resource augmentation of mobile devices. A significant advantage in battery life gain and performance enhancement is obtained. Moreover, cyber foraging is proved to be efficient in minimizing energy consumption per computing tasks. The work is based on scavenger cyber foraging system. In addition, the work can be used as a basis for studying cyber foraging and other similar approaches such as mobile cloud/edge computing for internet of things devices and improving the user experiences of applications by minimizing latencies through the use of potential nearby surrogates.