978 resultados para Mixed-acid Fermentation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fermentability of rice bran (RB), alone or in combination with one of two probiotics, by canine faecal microbiota was evaluated in stirred, pH-controlled, anaerobic batch cultures. RB enhanced the levels of bacteria detected by probes Bif164 (bifidobacteria) and Lab158 (lactic acid bacteria); however, addition of the probiotics did not have a significant effect on the predominant microbial counts compared with RB alone. RB sustained levels of Bifidobacterium longum 05 throughout the fermentation; in contrast, Lactobacillus acidophilus 14 150B levels decreased significantly after 5-h fermentation. RB fermentation induced changes in the short-chain fatty acid (SCFA) profile. However, RB combined with probiotics did not alter the SCFA levels compared with RB alone. Denaturing gradient gel electrophoresis analysis of samples obtained at 24 h showed a treatment effect with RB, which was not observed in the RB plus probiotic systems. Overall, the negative controls displayed lower species richness than the treatment systems and their banding profiles were distinct. This study illustrates the ability of a common ingredient found in pet food to modulate the canine faecal microbiota and highlights that RB may be an economical alternative to prebiotics for use in dog food.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postprandial plasma insulin concentrations after a single high-fat meal may be modified by the presence of specific fatty acids although the effects of sequential meal ingestion are unknown. The aim of the present study was to examine the effects of altering the fatty acid composition in a single mixed fat-carbohydrate meal on glucose metabolism and insulin sensitivity of a second meal eaten 5 h later. Insulin sensitivity was assessed using a minimal model approach. Ten healthy post-menopausal women underwent four two-meal studies in random order. A high-fat breakfast (40 g fat) where the fatty acid composition was predominantly saturated fatty acids (SFA), n-6 polyunsaturated fatty acids (PUFA), long-chain n-3 PUFA or monounsaturated fatty acids (MUFA) was followed 5 h later by a low-fat, high-carbohydrate lunch (5.7 g fat), which was identical in all four studies. The plasma insulin response was significantly higher following the SFA meal than the other meals after both breakfast and lunch (P<0.006) although there was no effect of breakfast fatty acid composition on plasma glucose concentrations. Postprandial insulin sensitivity (SI(Oral)) was assessed for 180 min after each meal. SI(Oral) was significantly lower after lunch than after breakfast for all four test meals (P=0.019) following the same rank order (SFA < n-6 PUFA < n-3 PUFA < MUFA) for each meal. The present study demonstrates that a single meal rich in SFA reduces postprandial insulin sensitivity with 'carry-over' effects for the next meal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thirty male rats were randomly assigned to one of three dietary groups in which the source of dietary fat was either a mixed oil, maize oil or fish oil. Effects of dietary fatty acid composition on in virro rates of [U-'4C]glucose incorporation into hepatic total lipids and into hepatic triacylglycerol were measured under basal, insulin (4 nM)-, gastric inhibitory polypeptide (GIP; 6 mi)- and insulin + GIP (4 nM + 6 n ~ ) - stimulated conditions. Effects of the three diets on postprandial plasma triacylglycerol, cholesterol, insulin and GIP concentrations were also measured. The fish-oil diet decreased rates of basal glucose incorporation into hepatic total lipids (P < 0.05) and hepatic triacylglycerol (P < 0.01) compared with the mixed-oil diet. The presence of insulin + GIP in the incubation medium stimulated glucose incorporation into hepatic total lipids in the maize-oil (P < 0.01) and fish-oil groups (P < OW), as well as into hepatic triacylglycerol in the maize-oil group (P < 0.005). In addition, the fish-oil diet decreased postprandial plasma triacylglycerol levels compared with both other dietary groups (P < 0-05 both cases), and the mixed-oil diet markedly increased postprandial plasma insulin levels compared with the other dietary groups (P c 0.001).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The present study was carried out to investigate effects of meals, rich in either saturated fatty acids (SFA), or n-6 or n-3 fatty acids, on postprandial plasma lipid and hormone concentrations as well as post-heparin plasma lipoprotein lipase (LPL) activity. DESIGN: The study was a randomized single-blind study comparing responses to three test meals. SETTING: The volunteers attended the Clinical Investigation Unit of the Royal Surrey County Hospital on three separate occasions in order to consume the meals. SUBJECTS: Twelve male volunteers with an average age of 22.5 +/- 1.4 years (mean +/- SD), were selected from the University of Surrey student population; one subject dropped out of the study because he found the test meal unpalatable. INTERVENTIONS: Three meals were given in the early evening and postprandial responses were followed overnight for 11h. The oils used to prepare each of the three test meals were: a mixed oil rich in saturated fatty acids (SFA) which mimicked the fatty acid composition of the current UK diet, corn oil, rich in n-6 fatty acids and a fish oil concentrate (MaxEPA) rich in n-3 fatty acids. The oil under investigation (40 g) was incorporated into the test meals which were otherwise identical [208 g carbohydrates, 35 g protein, 5.65 MJ (1350 kcal) energy]. Postprandial plasma triacylglycerol (TAG), gastric inhibitory polypeptide (GIP), and insulin responses, as well as post-heparin LPL activity (measured at 12 h postprandially only) were investigated. RESULTS: Fatty acids of the n-3 series significantly reduced plasma TAG responses compared to the mixed oil meal (P < 0.05) and increased post-heparin LPL activity 15 min after the injection of heparin (P < 0.01). A biphasic response was observed in TAG, with peak responses occurring at 1 h and between 3-7 h postprandially. GIP and insulin showed similar responses to the three test meals and no significant differences were observed. CONCLUSION: We conclude that fish oils can decrease postprandial plasma TAG levels partly through an increase in post-heparin LPL activity, which however, is not due to increased GIP or insulin concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of structure and molecular weight in fermentation selectivity in linear α-1,6 dextrans and dextrans with α-1,2 branching was investigated. Fermentation by gut bacteria was determined in anaerobic, pH-controlled fecal batch cultures after 36 h. Inulin (1%, wt/vol), which is a known prebiotic, was used as a control. Samples were obtained at 0, 10, 24, and 36 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and short-chain fatty acid analyses. The gas production of the substrate fermentation was investigated in non-pH-controlled, fecal batch culture tubes after 36 h. Linear and branched 1-kDa dextrans produced significant increases in Bifidobacterium populations. The degree of α-1,2 branching did not influence the Bifidobacterium populations; however, α-1,2 branching increased the dietary fiber content, implying a decrease in digestibility. Other measured bacteria were unaffected by the test substrates except for the Bacteroides-Prevotella group, the growth levels of which were increased on inulin and 6- and 70-kDa dextrans, and the Faecalibacterium prausnitzii group, the growth levels of which were decreased on inulin and 1-kDa dextrans. A considerable increase in short-chain fatty acid concentration was measured following the fermentation of all dextrans and inulin. Gas production rates were similar among all dextrans tested but were significantly slower than that for inulin. The linear 1-kDa dextran produced lower total gas and shorter time to attain maximal gas production compared to those of the 70-kDa dextran (branched) and inulin. These findings indicate that dextrans induce a selective effect on the gut flora, short-chain fatty acids, and gas production depending on their length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The in vitro fermentation selectivity of hydrolyzed caseinomacropeptide (CMP) glycosylated, via Maillard reaction (MR), with lactulose, galacto-oligosaccharides from lactose (GOSLa), and galacto-oligosaccharides from lactulose (GOSLu) was evaluated, using pH-controlled small-scale batch cultures at 37 °C under anaerobic conditions with human feces. After 10 and 24 h of fermentation, neoglyconjugates exerted a bifidogenic activity, similar to those of the corresponding prebiotic carbohydrates. No significant differences were found in Bacteroides, Lactobacillus�Enterococcus, Clostridium histolyticum subgroup, Atopobium and Clostridium coccoides�Eubacterium rectale populations. Concentrations of lactic acid and short-chain fatty acids (SCFA) produced during the fermentation of prebiotic carbohydrates were similar to those produced for their respective neoglycoconjugates at both fermentation times. These findings, joined with the functional properties attributed to CMP, could open up new applications of MR products involving prebiotics as novel multiple-functional ingredients with potential beneficial effects on human health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, in vitro fermentation of alternansucrase raffinose-derived oligosaccharides, previously fractionated according to their degree of polymerization (DP; from DP4 to DP10), was carried out using small-scale pH-controlled batch cultures at 37 °C under anaerobic conditions with human feces. Bifidogenic activity of oligosaccharides with DP4�6 similar to that of lactulose was observed; however, in general, a significant growth of lactic acid bacteria Bacteroides, Atopobium cluster, and Clostridium histolyticum group was not shown during incubation. Acetic acid was the main short chain fatty acid (SCFA) produced during the fermentation process; the highest levels of this acid were shown by alternansucrase raffinose acceptor pentasaccharides at 10 h (63.11 mM) and heptasaccharides at 24 h (54.71 mM). No significant differences between the gas volume produced by the mixture of raffinose-based oligosaccharides (DP5�DP10) and inulin after 24 h of incubation were detected, whereas lower gas volume was generated by DP4 oligosaccharides. These findings indicate that novel raffinose-derived oligosaccharides (DP4�DP10) could be a new source of prebiotic carbohydrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in vitro batch culture fermentation experiment was conducted with fecal inocula from three healthy volunteers in the presence and absence of a red wine extract. Changes in main bacterial groups were determined by FISH during a 48 h fermentation period. The catabolism of main flavonoids (i.e., flavan-3-ols and anthocyanins) and the formation of a wide a range of phenolic microbial metabolites were determined by a targeted UPLC-PAD-ESI-TQ MS method. Statistical analysis revealed that catechol/pyrocatechol, as well as 4-hydroxy-5-(phenyl)-valeric, 3- and 4-hydroxyphenylacetic, phenylacetic, phenylpropionic, and benzoic acids, showed the greatest increases in concentration during fermentation, whereas 5-(3′-hydroxyphenyl)-γ-valerolactone, its open form 4-hydroxy-5-(3′-hydroxyphenyl)-valeric acid, and 3,4-dihydroxyphenylacetic acid represented the largest interindividual variations in the catabolism of red wine polyphenols. Despite these changes, microbial catabolism did not produce significant changes in the main bacterial groups detected, although a slight inhibition of the Clostridium histolyticum group was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence from in vivo and in vitro studies suggests that the consumption of pro- and prebiotics may inhibit colon carcinogenesis; however, the mechanisms involved have, thus far, proved elusive. There are some indications from animal studies that the effects are being exerted during the promotion stage of carcinogenesis. One feature of the promotion stage of colorectal cancer is the disruption of tight junctions, leading to a loss of integrity across the intestinal barrier. We have used the Caco-2 human adenocarcinoma cell line as a model for the intestinal epithelia. Trans-epithelial electrical resistance measurements indicate Caco-2 monolayer integrity, and we recorded changes to this integrity following exposure to the fermentation products of selected probiotics and prebiotics, in the form of nondigestible oligosaccharides (NDOs). Our results indicate that NDOs themselves exert varying, but generally minor, effects upon the strength of the tight junctions, whereas the fermentation products of probiotics and NDOs tend to raise tight junction integrity above that of the controls. This effect was bacterial species and oligosaccharide specific. Bifidobacterium Bb 12 was particularly effective, as were the fermentation products of Raftiline and Raftilose. We further investigated the ability of Raftilose fermentations to protect against the negative effects of deoxycholic acid (DCA) upon tight junction integrity. We found protection to be species dependent and dependent upon the presence of the fermentation products in the media at the same time as or after exposure to the DCA. Results suggest that the Raftilose fermentation products may prevent disruption of the intestinal epithelial barrier function during damage by tumor promoters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0-50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have carried out experiments to investigate the ageing of latent fingerprints deposited on black PVC over a period of 4-15 weeks. A thumbprint was used in each case and before deposition of the print the donor rubbed their thumb around their nose to add sebaceous deposits. We have studied the effect of heat, light and moisture and we find that moisture is the most significant factor in the degradation of the latent print. We have attempted to enhance these latent prints by dusting with valine powder or powders composed of valine mixed with gold or red fluorescent commercial fingerprint powders. In order to make a direct comparison between “treated” and “untreated” prints, the prints were cut in half with one half being “treated” and one not. Our studies show the best results being obtained when powders of valine and red fluorescent powders are applied prior to cyanoacrylate fuming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain milk factors can promote the growth of a host-friendly gastrointestinal microflora. This may explain why breast-fed infants experience fewer intestinal infections than their formula-fed counterparts. The effect of formula supplementation with two such factors was investigated in this study. Infant faecal specimens were used to ferment formulas supplemented with glycomacropeptide and α-lactalbumin in a two-stage compound continuous culture model. Bacteriology was determined by fluorescence in situ hybridisation. Vessels that contained breast milk as well as α-lactalbumin and glycomacropeptide had stable counts of bifidobacteria while lactobacilli increased significantly only in vessels with breast milk. Bacteroides, clostridia and Escherichia coli decreased significantly in all runs. Acetate was the principal acid found along with high amounts of propionate and lactate. Supplementation of infant formulas with appropriate milk proteins may be useful in simulating the beneficial bacteriological effects of breast milk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aims to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from naturally fermented olives and select candidates to be used as probiotic starters for the improvement of the traditional fermentation process and the production of newly added value functional foods. Seventy one (71) lactic acid bacterial strains (17 Leuconostoc mesenteroides, 1 Ln. pseudomesenteroides, 13 Lactobacillus plantarum, 37 Lb. pentosus, 1 Lb. paraplantarum, and 2 Lb. paracasei subsp. paracasei) isolated from table olives were screened for their probiotic potential. Lb. rhamnosus GG and Lb. casei Shirota were used as reference strains. The in vitro tests included survival in simulated gastrointestinal tract conditions, antimicrobial activity (against Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7), Caco-2 surface adhesion, resistance to 9 antibiotics and haemolytic activity. Three (3) Lb. pentosus, 4 Lb. plantarum and 2 Lb. paracasei subsp. paracasei strains demonstrated the highest final population (>8 log cfu/ml) after 3 h of exposure at low pH. The majority of the tested strains were resistant to bile salts even after 4 h of exposure, while 5 Lb. plantarum and 7 Lb. pentosus strains exhibited partial bile salt hydrolase activity. None of the strains inhibited the growth of the pathogens tested. Variable efficiency to adhere to Caco-2 cells was observed. This was the same regarding strains' susceptibility towards different antibiotics. None of the strains exhibited β-haemolytic activity. As a whole, 4 strains of Lb. pentosus, 3 strains of Lb. plantarum and 2 strains of Lb. paracasei subsp. paracasei were found to possess desirable in vitro probiotic properties similar to or even better than the reference probiotic strains Lb. casei Shirota and Lb. rhamnosus GG. These strains are good candidates for further investigation both with in vivo studies to elucidate their potential health benefits and in olive fermentation processes to assess their technological performance as novel probiotic starters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose of review Evidence suggests that short-chain fatty acids (SCFAs) derived from microbial metabolism in the gut play a central role in host homeostasis. The present review describes the current understanding and physiological implications of SCFAs derived from microbial metabolism of nondigestible carbohydrates. Recent findings Recent studies indicate a role for SCFAs, in particular propionate and butyrate, in the metabolic and inflammatory disorders such as obesity, diabetes and inflammatory bowel diseases, through the activation of specific G-protein-coupled receptors and modification of transcription factors. Established prebiotics, such as fructooligosaccharides and galactooligosaccharides, which support the growth of Bifidobacteria, mainly mediate acetate production. Thus, recent identification of prebiotics which are able to stimulate the production of propionate and butyrate by benign saccharolytic populations in the colon is of interest. Summary Manipulation of saccharolytic fermentation by prebiotic substrates is beginning to provide information on structure–function relationships relating to the production of SCFAs, which have multiple roles in host homeostasis.