991 resultados para Mixed layer instabilities


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiple equilibria in a coupled ocean–atmosphere–sea ice general circulation model (GCM) of an aquaplanet with many degrees of freedom are studied. Three different stable states are found for exactly the same set of parameters and external forcings: a cold state in which a polar sea ice cap extends into the midlatitudes; a warm state, which is ice free; and a completely sea ice–covered “snowball” state. Although low-order energy balance models of the climate are known to exhibit intransitivity (i.e., more than one climate state for a given set of governing equations), the results reported here are the first to demonstrate that this is a property of a complex coupled climate model with a consistent set of equations representing the 3D dynamics of the ocean and atmosphere. The coupled model notably includes atmospheric synoptic systems, large-scale circulation of the ocean, a fully active hydrological cycle, sea ice, and a seasonal cycle. There are no flux adjustments, with the system being solely forced by incoming solar radiation at the top of the atmosphere. It is demonstrated that the multiple equilibria owe their existence to the presence of meridional structure in ocean heat transport: namely, a large heat transport out of the tropics and a relatively weak high-latitude transport. The associated large midlatitude convergence of ocean heat transport leads to a preferred latitude at which the sea ice edge can rest. The mechanism operates in two very different ocean circulation regimes, suggesting that the stabilization of the large ice cap could be a robust feature of the climate system. Finally, the role of ocean heat convergence in permitting multiple equilibria is further explored in simpler models: an atmospheric GCM coupled to a slab mixed layer ocean and an energy balance model

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A dynamic size-structured model is developed for phytoplankton and nutrients in the oceanic mixed layer and applied to extract phytoplankton biomass at discrete size fractions from remotely sensed, ocean-colour data. General relationships between cell size and biophysical processes (such as sinking, grazing, and primary production) of phytoplankton were included in the model through a bottom–up approach. Time-dependent, mixed-layer depth was used as a forcing variable, and a sequential data-assimilation scheme was implemented to derive model trajectories. From a given time-series, the method produces estimates of size-structured biomass at every observation, so estimates seasonal succession of individual phytoplankton size, derived here from remote sensing for the first time. From these estimates, normalized phytoplankton biomass size spectra over a period of 9 years were calculated for one location in the North Atlantic. Further analysis demonstrated that strong relationships exist between the seasonal trends of the estimated size spectra and the mixed-layer depth, nutrient biomass, and total chlorophyll. The results contain useful information on the time-dependent biomass flux in the pelagic ecosystem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A statistical model is derived relating the diurnal variation of sea surface temperature (SST) to the net surface heat flux and surface wind speed from a numerical weather prediction (NWP) model. The model is derived using fluxes and winds from the European Centre for Medium-Range Weather Forecasting (ECMWF) NWP model and SSTs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In the model, diurnal warming has a linear dependence on the net surface heat flux integrated since (approximately) dawn and an inverse quadratic dependence on the maximum of the surface wind speed in the same period. The model coefficients are found by matching, for a given integrated heat flux, the frequency distributions of the maximum wind speed and the observed warming. Diurnal cooling, where it occurs, is modelled as proportional to the integrated heat flux divided by the heat capacity of the seasonal mixed layer. The model reproduces the statistics (mean, standard deviation, and 95-percentile) of the diurnal variation of SST seen by SEVIRI and reproduces the geographical pattern of mean warming seen by the Advanced Microwave Scanning Radiometer (AMSR-E). We use the functional dependencies in the statistical model to test the behaviour of two physical model of diurnal warming that display contrasting systematic errors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To study the transient atmospheric response to midlatitude SST anomalies, a three-layer quasigeostrophic (QG) model coupled to a slab oceanic mixed layer in the North Atlantic is used. As diagnosed from a coupled run in perpetual winter conditions, the first two modes of SST variability are linked to the model North Atlantic Oscillation (NAO) and eastern Atlantic pattern (EAP), respectively, the dominant atmospheric modes in the Atlantic sector. The two SST anomaly patterns are then prescribed as fixed anomalous boundary conditions for the model atmosphere, and its transient responses are established from a large ensemble of simulations. In both cases, the tendency of the air–sea heat fluxes to damp the SST anomalies results in an anomalous diabatic heating of the atmosphere that, in turn, forces a baroclinic response, as predicted by linear theory. This initial response rapidly modifies the transient eddy activity and thus the convergence of eddy momentum and heat fluxes. The latter transforms the baroclinic response into a growing barotropic one that resembles the atmospheric mode that had created the SST anomaly in the coupled run and is thus associated with a positive feedback. The total adjustment time is as long as 3–4 months for the NAO-like response and 1–2 months for the EAP-like one. The positive feedback, in both cases, is dependent on the polarity of the SST anomaly, but is stronger in the NAO case, thereby contributing to its predominance at low frequency in the coupled system. However, the feedback is too weak to lead to an instability of the atmospheric modes and primarily results in an increase of their amplitude and persistence and a weakening of the heat flux damping of the SST anomaly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Antarctic continental shelf seas feature a bimodal distribution of water mass temperature, with the Amundsen and Bellingshausen Seas flooded by Circumpolar Deep Water that is several degrees Celsius warmer than the cold shelf waters prevalent in the Weddell and Ross Seas. This bimodal distribution could be caused by differences in atmospheric forcing, ocean dynamics, ocean and ice feedbacks, or some combination of these factors. In this study, a highly simplified coupled sea ice–mixed layer model is developed to investigate the physical processes controlling this situation. Under regional atmospheric forcings and parameter choices the 10-yr simulations demonstrate a complete destratification of the Weddell Sea water column in winter, forming cold, relatively saline shelf waters, while the Amundsen Sea winter mixed layer remains shallower, allowing a layer of deep warm water to persist. Applying the Weddell atmospheric forcing to the Amundsen Sea model destratifies the water column after two years, and applying the Amundsen forcing to the Weddell Sea model results in a shallower steady-state winter mixed layer that no longer destratifies the water column. This suggests that the regional difference in atmospheric forcings alone is sufficient to account for the bimodal distribution in Antarctic shelf-sea temperatures. The model prediction of mixed layer depth is most sensitive to the air temperature forcing, but a switch in all forcings is required to prevent destratification of the Weddell Sea water column.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In winter, brine rejection from sea ice formation and export in the Weddell Sea, offshore of Filchner-Ronne Ice Shelf (FRIS), leads to the formation of High Salinity Shelf Water (HSSW). This dense water mass enters the cavity beneath FRIS by sinking southward down the sloping continental shelf towards the grounding line. Melting occurs when the HSSW encounters the ice shelf, and the meltwater released cools and freshens the HSSW to form a water mass known as Ice Shelf Water (ISW). If this ISW rises, the ‘ice pump’ is initiated (Lewis and Perkin, 1986), whereby the ascending ISW becomes supercooled and deposits marine ice at shallower locations due to the pressure increase in the in-situ freezing temperature. Sandh¨ager et al. (2004) were able to infer the thickness patterns of marine ice deposits at the base of FRIS (figure 1), so the primary aim of this work is to try to understand the ocean flows that determine these patterns. The plume model we use to investigate ISW flow is described fully by Holland and Feltham (accepted) so only a relatively brief outline is presented here. The plume is simulated by combining a parameterisation of ice shelf basal interaction and a multiplesize- class frazil dynamics model with an unsteady, depth-averaged reduced-gravity plume model. In the model an active region of ISW evolves above and within an expanse of stagnant ambient fluid, which is considered to be ice-free and has fixed profiles of temperature and salinity. The two main assumptions of the model are that there is a well-mixed layer underneath the ice shelf and that the ambient fluid outside the plume is stagnant with fixed properties. The topography of the ice shelf that the plume flows beneath is set to the FRIS ice shelf draft calculated by Sandh¨ager et al. (2004) masked with the grounding line from the Antarctic Digital Database (ADD Consortium, 2002). To initiate the plumes, we assume that the intrusion of dense HSSW initially causes melting at the points on the grounding line where the glaciological tributaries feeding FRIS go afloat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the role of the ocean feedback on the climate in response to insolation forcing during the mid-Holocene (6,000 year BP) using results from seven coupled ocean–atmosphere general circulation models. We examine how the dipole in late summer sea-surface temperature (SST) anomalies in the tropical Atlantic increases the length of the African monsoon, how this dipole structure is created and maintained, and how the late summer SST warming in the northwest Indian Ocean affects the monsoon retreat in this sector. Similar mechanisms are found in all of the models, including a strong wind evaporation feedback and changes in the mixed layer depth that enhance the insolation forcing, as well as increased Ekman transport in the Atlantic that sharpens the Atlantic dipole pattern. We also consider changes in interannual variability over West Africa and the Indian Ocean. The teleconnection between variations in SST and Sahelian precipitation favor a larger impact of the Atlantic dipole mode in this region. In the Indian Ocean, the strengthening of the Indian dipole structure in autumn has a damping effect on the Indian dipole mode at the interannual time scale

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports on a set of paleoclimate simulations for 21, 16, 14, 11 and 6 ka (thousands of years ago) carried out with the Community Climate Model, Version 1 (CCM1) of the National Center for Atmospheric Research (NCAR). This climate model uses four interactive components that were not available in our previous simulations with the NCAR CCM0 (COHMAP, 1988Science, 241, 1043–1052; Wright et al., 1993Global Climate Since the Last Glocial Maximum, University of Minnesota Press, MN): soil moisture, snow hydrology, sea-ice, and mixed-layer ocean temperature. The new simulations also use new estimates of ice sheet height and size from ( Peltier 1994, Science, 265, 195–201), and synchronize the astronomically dated orbital forcing with the ice sheet and atmospheric CO2 levels corrected from radiocarbon years to calendar years. The CCM1 simulations agree with the previous simulations in their most general characteristics. The 21 ka climate is cold and dry, in response to the presence of the ice sheets and lowered CO2 levels. The period 14–6 ka has strengthened northern summer monsoons and warm mid-latitude continental interiors in response to orbital changes. Regional differences between the CCM1 and CCM0 simulations can be traced to the effects of either the new interactive model components or the new boundary conditions. CCM1 simulates climate processes more realistically, but has additional degrees of freedom that can allow the model to ‘drift’ toward less realistic solutions in some instances. The CCM1 simulations are expressed in terms of equilibrium vegetation using BIOME 1, and indicate large shifts in biomes. Northern tundra and forest biomes are displaced southward at glacial maximum and subtropical deserts contract in the mid-Holocene when monsoons strengthen. These vegetation changes could, if simulated interactively, introduce additional climate feedbacks. The total area of vegetated land remains nearly constant through time because the exposure of continental shelves with lowered sea level largely compensates for the land covered by the expanded ice sheets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transient atmospheric response to interactive SST anomalies in the midlatitudes is investigated using a three-layer QG model coupled in perpetual winter conditions to a slab oceanic mixed layer in the North Atlantic. The SST anomalies are diagnosed from a coupled run and prescribed as initial conditions, but are free to evolve. The initial evolution of the atmospheric response is similar to that obtained with a prescribed SST anomaly, starting as a quasi-linear baroclinic and then quickly evolving into a growing equivalent barotropic one. Because of the heat flux damping, the SST anomaly amplitude slowly decreases, albeit with little change in pattern. Correspondingly, the atmospheric response only increases until it reaches a maximum amplitude after about 1–3.5 months, depending on the SST anomaly considered. The response is similar to that at equilibrium in the fixed SST case, but it is 1.5–2 times smaller, and then slowly decays away.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The response of the Southern Ocean to a repeating seasonal cycle of ozone loss is studied in two coupled climate models and found to comprise both fast and slow processes. The fast response is similar to the inter-annual signature of the Southern Annular Mode (SAM) on Sea Surface Temperature (SST), on to which the ozone-hole forcing projects in the summer. It comprises enhanced northward Ekman drift inducing negative summertime SST anomalies around Antarctica, earlier sea ice freeze-up the following winter, and northward expansion of the sea ice edge year-round. The enhanced northward Ekman drift, however, results in upwelling of warm waters from below the mixed layer in the region of seasonal sea ice. With sustained bursts of westerly winds induced by ozone-hole depletion, this warming from below eventually dominates over the cooling from anomalous Ekman drift. The resulting slow-timescale response (years to decades) leads to warming of SSTs around Antarctica and ultimately a reduction in sea-ice cover year-round. This two-timescale behavior - rapid cooling followed by slow but persistent warming - is found in the two coupled models analysed, one with an idealized geometry, the other a complex global climate model with realistic geometry. Processes that control the timescale of the transition from cooling to warming, and their uncertainties are described. Finally we discuss the implications of our results for rationalizing previous studies of the effect of the ozone-hole on SST and sea-ice extent. %Interannual variability in the Southern Annular Mode (SAM) and sea ice covary such that an increase and southward shift in the surface westerlies (a positive phase of the SAM) coincides with a cooling of Sea Surface Temperature (SST) around 70-50$^\circ$S and an expansion of the sea ice cover, as seen in observations and models alike. Yet, in modeling studies, the Southern Ocean warms and sea ice extent decreases in response to sustained, multi-decadal positive SAM-like wind anomalies driven by 20th century ozone depletion. Why does the Southern Ocean appear to have disparate responses to SAM-like variability on interannual and multidecadal timescales? Here it is demonstrated that the response of the Southern Ocean to ozone depletion has a fast and a slow response. The fast response is similar to the interannual variability signature of the SAM. It is dominated by an enhanced northward Ekman drift, which transports heat northward and causes negative SST anomalies in summertime, earlier sea ice freeze-up the following winter, and northward expansion of the sea ice edge year round. The enhanced northward Ekman drift causes a region of Ekman divergence around 70-50$^\circ$S, which results in upwelling of warmer waters from below the mixed layer. With sustained westerly wind enhancement in that latitudinal band, the warming due to the anomalous upwelling of warm waters eventually dominates over the cooling from the anomalous Ekman drift. Hence, the slow response ultimately results in a positive SST anomaly and a reduction in the sea ice cover year round. We demonstrate this behavior in two models: one with an idealized geometry and another, more detailed, global climate model. However, the models disagree on the timescale of transition from the fast (cooling) to the slow (warming) response. Processes that controls this transition and their uncertainties are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We compare the quasi-equilibrium heat balances, as well as their responses to 4×CO2 perturbation, among three global climate models with the aim to identify and explain inter-model differences in ocean heat uptake (OHU) processes. We find that, in quasi-equilibrium, convective and mixed layer processes, as well as eddy-related processes, cause cooling of the subsurface ocean. The cooling is balanced by warming caused by advective and diapycnally diffusive processes. We also find that in the CO2-perturbed climates the largest contribution to OHU comes from changes in vertical mixing processes and the mean circulation, particularly in the extra-tropics, caused both by changes in wind forcing, and by changes in high-latitude buoyancy forcing. There is a substantial warming in the tropics, a significant part of which occurs because of changes in horizontal advection in extra-tropics. Diapycnal diffusion makes only a weak contribution to the OHU, mainly in the tropics, due to increased stratification. There are important qualitative differences in the contribution of eddy-induced advection and isopycnal diffusion to the OHU among the models. The former is related to the different values of the coefficients used in the corresponding scheme. The latter is related to the different tapering formulations of the isopycnal diffusion scheme. These differences affect the OHU in the deep ocean, which is substantial in two of the models, the dominant region of deep warming being the Southern Ocean. However, most of the OHU takes place above 2000 m, and the three models are quantitatively similar in their global OHU efficiency and its breakdown among processes and as a function of latitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The REgents PARk and Tower Environmental Experiment (REPARTEE) comprised two campaigns in London in October 2006 and October/November 2007. The experiment design involved measurements at a heavily trafficked roadside site, two urban background sites and an elevated site at 160–190 m above ground on the BT Tower, supplemented in the second campaign by Doppler lidar measurements of atmospheric vertical structure. A wide range of measurements of airborne particle physical metrics and chemical composition were made as well as measurements of a considerable range of gas phase species and the fluxes of both particulate and gas phase substances. Significant findings include (a) demonstration of the evaporation of traffic-generated nanoparticles during both horizontal and vertical atmospheric transport; (b) generation of a large base of information on the fluxes of nanoparticles, accumulation mode particles and specific chemical components of the aerosol and a range of gas phase species, as well as the elucidation of key processes and comparison with emissions inventories; (c) quantification of vertical gradients in selected aerosol and trace gas species which has demonstrated the important role of regional transport in influencing concentrations of sulphate, nitrate and secondary organic compounds within the atmosphere of London; (d) generation of new data on the atmospheric structure and turbulence above London, including the estimation of mixed layer depths; (e) provision of new data on trace gas dispersion in the urban atmosphere through the release of purposeful tracers; (f) the determination of spatial differences in aerosol particle size distributions and their interpretation in terms of sources and physico-chemical transformations; (g) studies of the nocturnal oxidation of nitrogen oxides and of the diurnal behaviour of nitrate aerosol in the urban atmosphere, and (h) new information on the chemical composition and source apportionment of particulate matter size fractions in the atmosphere of London derived both from bulk chemical analysis and aerosol mass spectrometry with two instrument types.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average −63%) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10–5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCMl, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100–200 km north in most sectors. Both CCMl and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although estimation of turbulent transport parameters using inverse methods is not new, there is little evaluation of the method in the literature. Here, it is shown that extended observation of the broad scale hydrography by Argo provides a path to improved estimates of regional turbulent transport rates. Results from a 20 year ocean state estimate produced with the ECCO v4 non-linear inverse modeling framework provide supporting evidence. Turbulent transport parameter maps are estimated under the constraints of fitting the extensive collection of Argo profiles collected through 2011. The adjusted parameters dramatically reduce misfits to in situ profiles as compared with earlier ECCO solutions. They also yield a clear reduction in the model drift away from observations over multi-century long simulations, both for assimilated variables (temperature and salinity) and independent variables (bio-geochemical tracers). Despite the minimal constraints imposed specifically on the estimated parameters, their geography is physically plausible and exhibits close connections with the upper ocean ocean stratification as observed by Argo. The estimated parameter adjustments furthermore have first order impacts on upper-ocean stratification and mixed layer depths over 20 years. These results identify the constraint of fitting Argo profiles as an effective observational basis for regional turbulent transport rates. Uncertainties and further improvements of the method are discussed.