931 resultados para Mixed Linear Model
Resumo:
This thesis concerns mixed flows (which are characterized by the simultaneous occurrence of free-surface and pressurized flow in sewers, tunnels, culverts or under bridges), and contributes to the improvement of the existing numerical tools for modelling these phenomena. The classic Preissmann slot approach is selected due to its simplicity and capability of predicting results comparable to those of a more recent and complex two-equation model, as shown here with reference to a laboratory test case. In order to enhance the computational efficiency, a local time stepping strategy is implemented in a shock-capturing Godunov-type finite volume numerical scheme for the integration of the de Saint-Venant equations. The results of different numerical tests show that local time stepping reduces run time significantly (between −29% and −85% CPU time for the test cases considered) compared to the conventional global time stepping, especially when only a small region of the flow field is surcharged, while solution accuracy and mass conservation are not impaired. The second part of this thesis is devoted to the modelling of the hydraulic effects of potentially pressurized structures, such as bridges and culverts, inserted in open channel domains. To this aim, a two-dimensional mixed flow model is developed first. The classic conservative formulation of the 2D shallow water equations for free-surface flow is adapted by assuming that two fictitious vertical slots, normally intersecting, are added on the ceiling of each integration element. Numerical results show that this schematization is suitable for the prediction of 2D flooding phenomena in which the pressurization of crossing structures can be expected. Given that the Preissmann model does not allow for the possibility of bridge overtopping, a one-dimensional model is also presented in this thesis to handle this particular condition. The flows below and above the deck are considered as parallel, and linked to the upstream and downstream reaches of the channel by introducing suitable internal boundary conditions. The comparison with experimental data and with the results of HEC-RAS simulations shows that the proposed model can be a useful and effective tool for predicting overtopping and backwater effects induced by the presence of bridges and culverts.
Resumo:
The problem of regression under Gaussian assumptions is treated generally. The relationship between Bayesian prediction, regularization and smoothing is elucidated. The ideal regression is the posterior mean and its computation scales as O(n3), where n is the sample size. We show that the optimal m-dimensional linear model under a given prior is spanned by the first m eigenfunctions of a covariance operator, which is a trace-class operator. This is an infinite dimensional analogue of principal component analysis. The importance of Hilbert space methods to practical statistics is also discussed.
Resumo:
We propose the adaptive algorithm for solving a set of similar scheduling problems using learning technology. It is devised to combine the merits of an exact algorithm based on the mixed graph model and heuristics oriented on the real-world scheduling problems. The former may ensure high quality of the solution by means of an implicit exhausting enumeration of the feasible schedules. The latter may be developed for certain type of problems using their peculiarities. The main idea of the learning technology is to produce effective (in performance measure) and efficient (in computational time) heuristics by adapting local decisions for the scheduling problems under consideration. Adaptation is realized at the stage of learning while solving a set of sample scheduling problems using a branch-and-bound algorithm and structuring knowledge using pattern recognition apparatus.
Resumo:
2000 Mathematics Subject Classification: 62H12, 62P99
Resumo:
Prior to 2000, there were less than 1.6 million students enrolled in at least one online course. By fall 2010, student enrollment in online distance education showed a phenomenal 283% increase to 6.1 million. Two years later, this number had grown to 7.1 million. In light of this significant growth and skepticism about quality, there have been calls for greater oversight of this format of educational delivery. Accrediting bodies tasked with this oversight have developed guidelines and standards for online education. There is a lack of empirical studies that examine the relationship between accrediting standards and student success. The purpose of this study was to examine the relationship between the presence of Southern Association of Colleges and Schools Commission on College (SACSCOC) standards for online education in online courses, (a) student support services and (b) curriculum and instruction, and student success. An original 24-item survey with an overall reliability coefficient of .94 was administered to students (N=464) at Florida International University, enrolled in 24 university-wide undergraduate online courses during fall 2014, who rated the presence of these standards in their online courses. The general linear model was utilized to analyze the data. The results of the study indicated that the two standards, student support services and curriculum and instruction were both significantly and positively correlated with student success but with small R2 and strengths of association less than .35 and .20 respectively. Mixed results were produced from Chi-square tests for differences in student success between higher and lower rated online courses when controlling for various covariates such as discipline, gender, race/ethnicity, GPA, age, and number of online courses previously taken. A multiple linear regression analysis revealed that the curriculum and instruction standard was the only variable that accounted for a significant amount of unique variance in student success. Another regression test revealed that no significant interaction effect exists between the two SACSCOC standards and GPA in predicting student success. The results of this study are useful for administrators, faculty, and researchers who are interested in accreditation standards for online education and how these standards relate to student success.
Resumo:
We investigate by means of Monte Carlo simulation and finite-size scaling analysis the critical properties of the three dimensional O (5) non-linear σ model and of the antiferromagnetic RP^(2) model, both of them regularized on a lattice. High accuracy estimates are obtained for the critical exponents, universal dimensionless quantities and critical couplings. It is concluded that both models belong to the same universality class, provided that rather non-standard identifications are made for the momentum-space propagator of the RP^(2) model. We have also investigated the phase diagram of the RP^(2) model extended by a second-neighbor interaction. A rich phase diagram is found, where most of the phase transitions are of the first order.
Resumo:
A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.
Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.
The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.
The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.
All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.
Resumo:
Background: Conifer populations appear disproportionately threatened by global change. Most examples are, however, drawn from the northern hemisphere and long-term rates of population decline are not well documented as historical data are often lacking. We use a large and long-term (1931-2013) repeat photography dataset together with environmental data and fire records to account for the decline of the critically endangered Widdringtonia cedarbergensis. Eighty-seven historical and repeat photo-pairs were analysed to establish 20th century changes in W. cedarbergensis demography. A generalized linear mixed-effects model was fitted to determine the relative importance of environmental factors and fire-return interval on mortality for the species. Results: From an initial total of 1313 live trees in historical photographs, 74% had died and only 44 (3.4%) had recruited in the repeat photographs, leaving 387 live individuals. Juveniles (mature adults) had decreased (increased) from 27% (73%) to 8% (92%) over the intervening period. Our model demonstrates that mortality is related to greater fire frequency, higher temperatures, lower elevations, less rocky habitats and aspect (i.e. east-facing slopes had the least mortality). Conclusions: Our results show that W. cedarbergensis populations have declined significantly over the recorded period, with a pronounced decline in the last 30 years. Individuals that established in open habitats at lower, hotter elevations and experienced a greater fire frequency appear to be more vulnerable to mortality than individuals growing within protected, rocky environments at higher, cooler locations with less frequent fires. Climate models predict increasing temperatures for our study area (and likely increases in wildfires). If these predictions are realised, further declines in the species can be expected. Urgent management interventions, including seedling out-planting in fire-protected high elevation sites, reducing fire frequency in higher elevation populations, and assisted migration, should be considered.
Resumo:
To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation
Resumo:
We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical generalized linear model (HGLM), zero-inflated Poisson (ZIP), and hurdle models. The quasi-Poisson HGLM allows for both under- and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi-Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi-Poisson HGLM with spatial random effects.
Resumo:
Animals that fast during breeding and/or development, such as phocids, must regulate energy balance carefully to maximize reproductive fitness and survival probability. Adiponectin, produced by adipose tissue, contributes to metabolic regulation by modulating sensitivity to insulin, increasing fatty acid oxidation by liver and muscle, and promoting adipogenesis and lipid storage in fat tissue. We tested the hypotheses that (1) circulating adiponectin, insulin, or relative adiponectin gene expression is related to nutritional state, body mass, and mass gain in wild gray seal pups; (2) plasma adiponectin or insulin is related to maternal lactation duration, body mass, percentage milk fat, or free fatty acid (FFA) concentration; and (3) plasma adiponectin and insulin are correlated with circulating FFA in females and pups. In pups, plasma adiponectin decreased during suckling (linear mixed-effects model [LME]: T = 4.49; P < 0.001) and the early postweaning fast (LME: T = 3.39; P = 0.004). In contrast, their blubber adiponectin gene expression was higher during the early postweaning fast than early in suckling (LME: T = 2.11; P = 0.046). Insulin levels were significantly higher in early (LME: T = 3.52; P = 0.004) and late (LME: T = 6.99; P < 0.001) suckling than in fasting and, given the effect of nutritional state, were also positively related to body mass (LME: T = 3.58; P = 0.004). Adiponectin and insulin levels did not change during lactation and were unrelated to milk FFA or percentage milk fat in adult females. Our data suggest that adiponectin, in conjunction with insulin, may facilitate fat storage in seals and is likely to be particularly important in the development of blubber reserves in pups.
Resumo:
Ce mémoire s’intéresse à l’étude du critère de validation croisée pour le choix des modèles relatifs aux petits domaines. L’étude est limitée aux modèles de petits domaines au niveau des unités. Le modèle de base des petits domaines est introduit par Battese, Harter et Fuller en 1988. C’est un modèle de régression linéaire mixte avec une ordonnée à l’origine aléatoire. Il se compose d’un certain nombre de paramètres : le paramètre β de la partie fixe, la composante aléatoire et les variances relatives à l’erreur résiduelle. Le modèle de Battese et al. est utilisé pour prédire, lors d’une enquête, la moyenne d’une variable d’intérêt y dans chaque petit domaine en utilisant une variable auxiliaire administrative x connue sur toute la population. La méthode d’estimation consiste à utiliser une distribution normale, pour modéliser la composante résiduelle du modèle. La considération d’une dépendance résiduelle générale, c’est-à-dire autre que la loi normale donne une méthodologie plus flexible. Cette généralisation conduit à une nouvelle classe de modèles échangeables. En effet, la généralisation se situe au niveau de la modélisation de la dépendance résiduelle qui peut être soit normale (c’est le cas du modèle de Battese et al.) ou non-normale. L’objectif est de déterminer les paramètres propres aux petits domaines avec le plus de précision possible. Cet enjeu est lié au choix de la bonne dépendance résiduelle à utiliser dans le modèle. Le critère de validation croisée sera étudié à cet effet.
Resumo:
Cette thèse est une contribution à la modélisation, la planification et l’optimisation du transport pour l’approvisionnement en bois de forêt des industries de première transformation. Dans ce domaine, les aléas climatiques (mise au sol des bois par les tempêtes), sanitaires (attaques bactériologiques et fongiques des bois) et commerciaux (variabilité et exigence croissante des marchés) poussent les divers acteurs du secteur (entrepreneurs et exploitants forestiers, transporteurs) à revoir l’organisation de la filière logistique d’approvisionnement, afin d’améliorer la qualité de service (adéquation offre-demande) et de diminuer les coûts. L’objectif principal de cette thèse était de proposer un modèle de pilotage améliorant la performance du transport forestier, en respectant les contraintes et les pratiques du secteur. Les résultats établissent une démarche de planification hiérarchique des activités de transport à deux niveaux de décision, tactique et opérationnel. Au niveau tactique, une optimisation multi-périodes permet de répondre aux commandes en minimisant l’activité globale de transport, sous contrainte de capacité agrégée des moyens de transport accessibles. Ce niveau permet de mettre en œuvre des politiques de lissage de charge et d’organisation de sous-traitance ou de partenariats entre acteurs de transport. Au niveau opérationnel, les plans tactiques alloués à chaque transporteur sont désagrégés, pour permettre une optimisation des tournées des flottes, sous contrainte des capacités physiques de ces flottes. Les modèles d’optimisation de chaque niveau sont formalisés en programmation linéaire mixte avec variables binaires. L’applicabilité des modèles a été testée en utilisant un jeu de données industrielles en région Aquitaine et a montré des améliorations significatives d’exploitation des capacités de transport par rapport aux pratiques actuelles. Les modèles de décision ont été conçus pour s’adapter à tout contexte organisationnel, partenarial ou non : la production du plan tactique possède un caractère générique sans présomption de l’organisation, celle-ci étant prise en compte, dans un deuxième temps, au niveau de l’optimisation opérationnelle du plan de transport de chaque acteur.
Resumo:
Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats, considering the large geographical catchment areas of German wind turbines for this species.
Resumo:
Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (delta D) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of delta D as a robust geographical tracer of breeding origins of European bats by measuring delta D in hair of five sedentary bat species from 45 locations throughout Europe. The delta D of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking delta D of bat hair to precipitation delta D of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used delta C-13 and delta N-15 to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe.