971 resultados para Microwave resonators
Resumo:
The influence of non-equilibrium plasma layer pressure and thickness on the transmission of microwave is considered when the incidence of wave is at an arbitrary angle. The plasma is cold, weakly ionized, and steady-state. It is assumed that it is a layered media with a kind of distribution of electron number density and the microwave is a plane wave. The results show that the pressure of plasma affects the absorption of microwave deeply, and the thickness relatively weakly in a non-equilibrium plasma slab.
Resumo:
We investigate the steady-state optical bistability behavior in a three-level A-type atomic system closed by a microwave field under the condition that the applied fields are in resonance with corresponding atomic transitions. It is shown that the bistable hysteresis cycles can be controlled by both the amplitude and the phase of the microwave field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Part A
A problem restricting the development of the CuCl laser has been the decrease in output power with increases of tube temperature above 400°C. At that temperature the CuCl vapor pressure is about .1 torr. This is a small fraction of the buffer gas pressure (He at 10 torr).
The aim of the project was to measure the peak radiation temperature (assumed related to the mean energy of electrons) in the laser discharge as a function of the tube temperature. A 24 gHz gated microwave radiometer was used.
It was found that at the tube temperatures at which the output power began to deteriorate, the electron radiation temperature showed a sharp increase (compared with radiation temperature in pure buffer).
Using the above result, we have postulated that this sudden increase is a result of Penning ionization of the Cu atoms. As a consequence of this process the number of Cu atoms available for lasing decrease.
PART B
The aim of the project was to study the dissociation of CO2 in the glow discharge of flowing CO2 lasers.
A TM011 microwave (3 gHz) cavity was used to measure the radially averaged electron density ne and the electron-neutral collision frequency in the laser discharge. An estimate of the electric field is made from these two measurements. A gas chromatograph was used to measure the chemical composition of the gases after going through the discharge. This instrument was checked against a mass spectrometer for accuracy and sensitivity.
Several typical laser mixtures were .used: CO2-N2-He (1,3,16), (1,3,0), (1,0,16), (1,2,10), (1,2,0), (1,0,10), (2,3,15), (2,3,0), (2,0,15), (1,3,16)+ H2O and pure CO2. Results show that for the conditions studied the dissociation as a function of the electron density is uniquely determined by the STP partial flow rate of CO2, regardless of the amount of N2 and/or He present. The presence of water vapor in the discharge decreased the degree of dissociation.
A simple theoretical model was developed using thermodynamic equilibrium. The electrons were replaced in the calculations by a distributed heat source.
The results are analyzed with a simple kinetic model.
Resumo:
Being able to detect a single molecule without the use of labels has been a long standing goal of bioengineers and physicists. This would simplify applications ranging from single molecular binding studies to those involving public health and security, improved drug screening, medical diagnostics, and genome sequencing. One promising technique that has the potential to detect single molecules is the microtoroid optical resonator. The main obstacle to detecting single molecules, however, is decreasing the noise level of the measurements such that a single molecule can be distinguished from background. We have used laser frequency locking in combination with balanced detection and data processing techniques to reduce the noise level of these devices and report the detection of a wide range of nanoscale objects ranging from nanoparticles with radii from 100 to 2.5 nm, to exosomes, ribosomes, and single protein molecules (mouse immunoglobulin G and human interleukin-2). We further extend the exosome results towards creating a non-invasive tumor biopsy assay. Our results, covering several orders of magnitude of particle radius (100 nm to 2 nm), agree with the `reactive' model prediction for the frequency shift of the resonator upon particle binding. In addition, we demonstrate that molecular weight may be estimated from the frequency shift through a simple formula, thus providing a basis for an ``optical mass spectrometer'' in solution. We anticipate that our results will enable many applications, including more sensitive medical diagnostics and fundamental studies of single receptor-ligand and protein-protein interactions in real time. The thesis summarizes what we have achieved thus far and shows that the goal of detecting a single molecule without the use of labels can now be realized.
Resumo:
The microwave scattering properties of an axially magnetized afterglow plasma column in an S-band waveguide have been investigated experimentally. The column axis is perpendicular to the electric field and the direction of wave propagation in the H_(10)-mode waveguide. Strong absorption is found in the range of upper hybrid frequencies, ω_c ≤ ω ≤ [ω^2_c + ω^2_p(r,t)]^(1/2) where ω_c is the electron cyclotron frequency and ω_p is the locally and temporally varying electron plasma frequency. With the high absorption the noise emission approaches the blackbody limit. A microwave radiometer has been used to measure the noise power and with a comparison and null-technique the electron temperature. As emission and absorption are largely confined to a resonant layer, spatially resolved temperature data are obtained. Time resolution is obtained by gating the radiometer. The peak electron density is derived from the emission or absorption onset at the maximum upper hybrid frequency and confirmed by independent measurements. With this diagnostic technique the electron density and temperature decay has been studied under a variety of experimental conditions. Ambipolar diffusion and collisional cooling essentially account for the plasma decay, but impurities and metastable ions play an important role. The diagnostic method is successfully applied in a microwave heating experiment. The existence of absorbing resonant layers is shown by a peak in the radial temperature profile where the local upper hybrid frequency equals the heating frequency. The knowledge of the plasma parameters is important in the study of hot plasma effects. Buchsbaum-Hasegawa modes are investigated in a wide range of magnetic fields (.5 < ω_c/ω < .985).