1000 resultados para Microstripline Structures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity formulation suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. This formulation, referred to as the refined plastic hinge method, implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the well-known Kohn anomaly predicts Tc for ordered AlB2-type structures. We use ab initio Density Functional Theory to calculate phonon dispersions for Mg1-xAlxB2 compositions and identify a phonon anomaly with magnitude that predicts experimental values of Tc for all x. Key features of these anomalies correlate with the electronic structure of Mg1-xAlxB2. This approach predicts Tc for other known AlB2-type structures as well as new compositions. We predict that Mg0.5Ba0.5B2 will show Tc = 63.6 ± 6.6 K. Other forms of the Mg1-xBaxB2 series will also be superconductors when successfully synthesised. Our calculations predict that the end-member composition, BaB2, is likely to show a Tc significantly higher than currently achieved by other diborides although an applied pressure ~16 GPa may be required to stabilise the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional coordination polymeric structures of the hydrated potassium and rubidium salts of (3,5-dichlorophenoxy)acetic acid, (3,5-D) namely, poly[mu-aqua-bis[mu3-2-(3,5-dichlorophenoxy)acetato]potassium, [K2(C8H5Cl2O3)2 (H2O)]n (I) and poly[mu-aqua-bis[mu3-2-(3,5-dichlorophenoxy)acetato]dirubidium] [Rb2(C8H5Cl2O3)2 (H2O)]n (II), respectively have been determined and are described. The two compounds are isotypic and the polymer is based on centrosymmetric dinuclear bridged complex units. The irregular six-coordination about the metal centres comprises a bridging water molecule lying on a twofold rotation axis, the phenoxy O-atom donor and and a triple bridging carboxylate O-atom of the oxoacetate side chain of the 3,5-D ligand in a bidentate chelate mode, the second carboxy O-donor, also bridging. The K-O and Rb-O bond-length ranges are 2.7238(15)--2.9459(14) and 2.832(2)--3.050(2) \%A respectively and the K...K and Rb...Rb separations in the dinuclear unit are 4.0214(7) and 4.1289(6) \%A, respectively. Within the two-dimensional layers which lie parallel to (100), the coordinated water molecule forms an O---H...O hydrogen bond to the single bridging carboxylate O atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two hydrated salts of 4-aminophenylarsonic acid (p-arsanilic acid), namely ammonium 4-aminophenylarsonate monohydrate, NH4(+)·C6H7AsNO3(-)·H2O, (I), and the one-dimensional coordination polymer catena-poly[[(4-aminophenylarsonato-κO)diaquasodium]-μ-aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter-species N-H...O and arsonate and water O-H...O hydrogen bonds, giving the common two-dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen-bonding interactions involving the para-amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na(+) cation is coordinated by five O-atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square-pyramidal coordination environment. The water bridges generate one-dimensional chains extending along c and extensive interchain O-H...O and N-H...O hydrogen-bonding interactions link these chains, giving an overall three-dimensional structure. The two structures reported here are the first reported examples of salts of p-arsanilic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional polymeric structures of the caesium complexes with the phenoxyacetic acid analogues (4-fluorophenoxy)acetic acid, (3-chloro-2-methylphenoxy)acetic acid and the herbicidally active (2,4-dichlorophen­oxy)acetic acid (2,4-D), namely poly[[5-(4-fluorophenoxy)acetato][4-(4-fluorophenoxy)acetato]dicaesium], [Cs2(C8H6FO3)2]n, (I), poly[aqua[5-(3-chloro-2-methylphenoxy)acetato]caesium], [Cs(C9H8ClO3)(H2O)]n, (II), and poly[[7-(2,4-di­chlorophenoxy)acetato][(2,4-dichlorphenoxy)acetic acid]caesium], [Cs(C8H5Cl2O3)(C8H6Cl2O3)]n, (III), are described. In (I), the Cs+ cations of the two individual irregular coordination polyhedra in the asymmetric unit (one CsO7 and the other CsO8) are linked by bridging carboxylate O-atom donors from the two ligand molecules, both of which are involved in bidentate chelate Ocarboxy,Ophenoxy interactions, while only one has a bidentate carboxylate O,O'-chelate inter­action. Polymeric extension is achieved through a number of carboxylate O-atom bridges, with a minimum CsCs separation of 4.3231 (9) Å, giving layers which lie parallel to (001). In hydrated complex (II), the irregular nine-coordination about the Cs+ cation comprises a single monodentate water molecule, a bidentate Ocarboxy,Ophenoxy chelate interaction and six bridging carboxylate O-atom bonding interactions, giving a CsCs separation of 4.2473 (3) Å. The water mol­ecule forms intralayer hydrogen bonds within the two-dimensional layers, which lie parallel to (100). In complex (III), the irregular centrosymmetric CsO6Cl2 coordination environment comprises two O-atom donors and two ring-substituted Cl-atom donors from two hydrogen bis[(2,4-dichlorophenoxy)acetate] ligand species in a bidentate chelate mode, and four O-atom donors from bridging carboxyl groups. The duplex ligand species lie across crystallographic inversion centres, linked through a short O-HO hydrogen bond involving the single acid H atom. Structure extension gives layers which lie parallel to (001). The present set of structures of Cs salts of phenoxyacetic acids show previously demonstrated trends among the alkali metal salts of simple benzoic acids with no stereochemically favourable interactive substituent groups for formation of two-dimensional coordination polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endoplasmatic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in trimming of peptides to an optimal length for presentation by major histocompatibility complex (MHC) class I molecules. Polymorphisms in ERAP1 have been associated with chronic inflammatory diseases, including ankylosing spondylitis (AS) and psoriasis, and subsequent in vitro enzyme studies suggest distinct catalytic properties of ERAP1 variants. To understand structure-activity relationships of this enzyme we determined crystal structures in open and closed states of human ERAP1, which provide the first snapshots along a catalytic path. ERAP1 is a zinc-metallopeptidase with typical H-E-X-X-H-(X)18-E zinc binding and G-A-M-E-N motifs characteristic for members of the gluzincin protease family. The structures reveal extensive domain movements, including an active site closure as well as three different open conformations, thus providing insights into the catalytic cycle. A K 528R mutant strongly associated with AS in GWAS studies shows significantly altered peptide processing characteristics, which are possibly related to impaired interdomain interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal state conformations of three peptides containing the alpha, alpha-dialkylated residues, alpha,alpha-di-n-propylglycine (Dpg) and alpha,alpha-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Ala-OMe (I) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II beta-turn conformations with Ala (1) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: phi = 66.2 degrees, psi = 19.3 degrees; III: phi = 66.5 degrees, psi = 21.1 degrees) deviate appreciably from ideal values for the i + 2 residue in a type II beta-turn. In both peptides the observed (N...O) distances between the Boc CO and Ala(3) NH groups are far too long (I: 3.44 Angstrom; III: 3.63 Angstrom) for an intramolecular 4 --> 1 hydrogen bond. Boc-Ala-Dpg-Ala-NHMe (II) crystallizes with two independent molecules in the asymmetric unit. Both molecules IIA and IIB adopt consecutive beta-turn (type III-III in IIA and type III-I in IIB) or incipient 3(10)-helical structures, stabilized by two intramolecular 4 --> 1 hydrogen bonds. In all four molecules the bond angle N-C-alpha-C' (tau) at the Dxg residues are greater than or equal to 110 degrees. The observation of conformational angles in the helical region of phi,psi space at these residues is consistent with theoretical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimeric or gemini surfactants consist of two hydrophobic chains and two hydrophilic head groups co; valently connected by a hydrocarbon spacer. Small-angle neutron scattering measurements from bis-cationic C16H33N+(CH3)(2)-(CH2)(m)-N+(CH3)(2)C(16)H(33)2Br(-) dimeric surfactants, referred to-as 16-m-16, for different length of hydrocarbon spacers m-3-6, 8, 10, and 12, are reported. The measurements have been carried out at various concentrations: C=2.5 and 10 mM for all m and C=30 and 50 mM for m greater than or equal to 5. It is found that micellar structure depends on the length of the spacer. Micelles are disks for m=3, cylindrical for m=4, and prolate ellipsoidals for other values of m. These structural results are in agreement with the theoretical predictions based on the packing parameter. It has also been observed that conformation of the spacer and the hydrophobic chains in the interior of the micelle change as the length of the spacer is increased. The concentration dependence for m greater than or equal to 5 shows that the effect of surfactant concentration on the size of the micelle is more pronounced for m=5 and 12 than for the intermediate spacers. The fractional charge on the micelle increases with the increase in spacer length and decreases when the concentration is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anhydrous salts morpholinium (tetrahydro-2-H-1,4-oxazine) phenxyacetate, C4H10NO+ C8H7O3- (I), (4-fluorophenoxy)acetate, C4H10NO+ C8H6FO3- (II) and isomeric morpholinium (3,5-dichlorophenoxy)acetate (3,5-D) (III) and morpholinium (2,4-dichlorophenoxy)acetate (2,4-D), C4H10NO+ C8H5Cl2O3- (IV), have been determined and their hydrogen-bonded structures are described. In the crystals of (I), (III) and (IV), one of the the aminium H atoms is involved in a three-centre asymmetric cation-anion N-H...O,O' R2/1(4) hydrogen-bonding interaction with the two carboxyl O-atom acceptors of the anion. With the structure of (II), the primary N---H...O interaction is linear. In the structures of (I), (II) and (III), the second N-H...O(carboxyl) hydrogen bond generates one-dimensional chain structures extending in all cases along [100]. With (IV), the ion pairs are linked though inversion-related N-H...O hydrogen bonds [graph set R2/4(8)], giving a cyclic heterotetrameric structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexes [Ru2O(O2CR)(2)(1-MeIm)(6)](ClO4)(2) (la-c), [Ru2O(O2CR)(2)(ImH)(6)](ClO4)(2) (2a,b), and [Ru2O(O2CR)(2)(4-MeImH)(6)](ClO4)(2) (3a,b) with a (mu-oxo)bis(mu-carboxylato)diruthenium(III) core have been prepared by reacting Ru2Cl(O2CR)(4) with the corresponding imidazole base, viz. 1-methylimidazole (1-MeIm), imidazole (ImH), and 4-methylimidazole (4-MeImH) in methanol, followed by treatment with NaClO4 in water (R: Me, a; C6H4-p-OMe, b; C6H4-p-Me, c). Diruthenium(III,IV) complexes [Ru2O(O2CR)(2)(1-MeIm)(6)](ClO4)(3) (R: Me, 4a; C6H4-p-OMe, 4b; C6H4-p-Me, 4c) have been prepared by one-electron oxidation of 1 in MeCN with K2S2O8 in water. Complexes la, 2a . 3H(2)O, and 4a . 1.5H(2)O have been structurally characterized. Crystal data for the complexes are as follows: la, orthorhombic, P2(1)2(1)2(1), a = 7.659(3) Angstrom, b = 22.366(3) Angstrom, c = 23.688(2) Angstrom, V = 4058(2) Angstrom(3), Z = 4, R = 0.0475, and R-w = 0.0467 for 2669 reflections with F-o > 2 sigma(F-o); 2a . 3H(2)O, triclinic, , a = 13.735(3) Angstrom, b = 14.428(4) Angstrom, c = 20.515(8) Angstrom, alpha = 87.13(3)degrees, beta = 87.61(3)degrees, gamma = 63.92(2)degrees, V = 3646(2) Angstrom(3), Z = 4, R = 0.0485 and R-w = 0.0583 for 10 594 reflections with F-o > 6 sigma(F-o); 4a . 1.5H(2)O triclinic, , a = 11.969(3) Angstrom, b = 12.090(6) Angstrom, c = 17.421(3) Angstrom, alpha = 108.93(2)degrees, beta = 84.42(2)degrees, gamma = 105.97(2)degrees, V = 2292(1) Angstrom(3), Z = 2, R = 0.0567, and R-w = 0.0705 for 6775 reflections with F-o > 6 sigma(F-o). The complexes have a diruthenium unit held by an oxo and two carboxylate ligands, and the imidazole ligands occupy the terminal sites of the core. The Ru-Ru distance and the Ru-O-oxo-Ru angle in la and 2a . 3H(2)O are 3.266(1), 3.272(1) Angstrom and 122.4(4), 120.5(2)degrees, while in 4a . 1.5H(2)O these values are 3.327(1) Angstrom and 133.6(2)degrees. The diruthenium(III) complexes 1-3 are blue in color and they exhibit an intense visible band in the range 560-575 nm. The absorption is charge transfer in nature involving the Ru(III)-d pi and O-oxo-p pi orbitals. The diruthenium(III,IV) complexes are red in color and show an intense band near 500 nm. The diruthenium(III) core readily gets oxidized with K2S2O8 forming quantitatively the diruthenium(III,IV) complex. The visible spectral record of the conversion shows an isosbestic point at 545 nm for 1 and at 535 nm for 2 and 3. Protonation of the oxide bridge by HClO4 in methanol yields the [Ru-2(mu-OH)(mu-O2CR)(2)](3+) core. The hydroxo species shows a visible band al 550 nm. The pK(a) value for la is 2.45. The protonated species are unstable. The 1-MeIm species converts to the diruthenium(III,IV) core, while the imidazole complex converts to [Ru(ImH)(6)](3+) and some uncharacterized products. Complex [Ru(ImH)(6)](ClO4)(3) has been structurally characterized. The diruthenium(III) complexes are essentially diamagnetic and show characteristic H-1 NMR spectra indicating the presence of the dimeric structure in solution. The diruthenium(III,IV) complexes are paramagnetic and display rhombic EPR spectral features. Complexes 1-3 are redox active. Complex 1 shows the one-electron reversible Ru-2(III)/(RuRuIV)-Ru-III, one-electron quasireversible (RuRuIV)-Ru-III/Ru-2(IV), and two-electron quasireversible Ru-2(III)/Ru-2(II) couples near 0.4, 1.5, and -1.0 V vs SCE In MeCN-0.1 M TBAP, respectively, in the cyclic and differential pulse voltammetric studies. Complexes 2 and 3 exhibit only reversible Ru-2(III)/(RuRuIV)-Ru-III and the quasireversible (RuRuIV)-Ru-III/Ru-2(IV) couples near 0.4 and 1.6 V vs SCE, respectively, The observation of a quasireversible one-step two-electron transfer reduction process in 1 is significant considering its relevance to the rapid and reversible Fe-2(III)/Fe-2(II) redox process known for the tribridged diiron core in the oxy and deoxy forms of hemerythrin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DL- and L-arginine complexes of oxalic acid are made up of zwitterionic positively charged amino acid molecules and semi-oxalate ions. The dissimilar molecules aggregate into separate alternating layers in the former. The basic unit in the arginine layer is a centrosymmetric dimer, while the semi-oxalate ions form hydrogen-bonded strings in their layer. In the L-arginine complex each semi-oxalate ion is surrounded by arginine molecules and the complex can be described as an inclusion compound. The oxalic acid complexes of basic amino acids exhibit a variety of ionization states and stoichiometry. They illustrate the effect of aggregation and chirality on ionization state and stoichiometry, and that of molecular properties on aggregation. The semi-oxalate/oxalate ions tend to be planar, but large departures from planarity are possible. The amino acid aggregation in the different oxalic acid complexes do not resemble one another significantly, but the aggregation of a particular amino acid in its oxalic acid complex tends to have similarities with its aggregation in other structures. Also, semi-oxalate ions aggregate into similar strings in four of the six oxalic acid complexes. Thus, the intrinsic aggregation propensities of individual molecules tend to be retained in the complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary L-glutamine (L-gln) copper(II) complexes [Cu(L-gln)(B)(H2O)](X) (B = 2,2'-bipyridine (bpy), X = 0.5SO(4)(2-), 1; B = 1,10-phenanthroline (phen), X = ClO4-, 2) and [Cu(L-gln)(dpq)(ClO4)] (3) (dpq, dipyridoquinoxaline) are prepared and characterized by physicochemical methods. The DNA binding and cleavage activity of the complexes have been studied. Complexes 1-3 are structurally characterized by X-ray crystallography. The complexes show distorted square pyramidal (4+1) CuN3O2 coordination geometry in which the N,O-donor amino acid and the N, N-donor heterocyclic base bind at the basal plane with a H2O or perchlorate as the axial ligand. The crystal structures of the complexes exhibit chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The complexes display a d-d electronic band in the range of 610-630 nm in aqueous-dimethylformamide (DMF) solution (9:1 v/v). The quasireversible cyclic voltammetric response observed near -0.1 V versus SCE in DMF-TBAP is assignable to the Cu(II)/Cu(I) couple. The binding affinity of the complexes to calf thymus (CT) DNA follows the order: 3 (dpq) > 2 (phen) >> 1 (bpy). Complexes 2 and 3 show DNA cleavage activity in dark in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent via a mechanistic pathway forming hydroxyl radical as the reactive species. The dpq complex 3 shows efficient photoinduced DNA cleavage activity on irradiation with a monochromatic UV light of 365 nm in absence of any external reagent. The cleavage efficiency of the DNA minor groove binding complexes follows the order:3 > 2 >> 1. The dpq complex exhibits photocleavage of DNA on irradiation with visible light of 647.1 nm. Mechanistic data on the photo-induced DNA cleavage reactions reveal the involvement of singlet oxygen (O-1(2)) as the reactive species in a type-II pathway. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple equivalent circuit model for the analysis of dispersion and interaction impedance characteristics of serpentine folded-waveguide slow-wave structure was developed by considering the straight and curved portions of structure supporting the dominant TE10-mode of the rectangular waveguide. Expressions for the lumped capacitance and inductance per period of the slow-wave structure were derived in terms of the physical dimensions of the structure, incorporating the effects of the beam-hole in the lumped parameters. The lumped parameters were subsequently interpreted for obtaining the dispersion and interaction impedance characteristics of the structure. The analysis was simple yet accurate in predicting the dispersion and interaction impedance behaviour at millimeter-wave frequencies. The analysis was benchmarked against measurement as well as with 3D electromagnetic modeling using MAFIA for two typical slow-wave structures (one at the Ka-band and the other at the W-band) and close agreement observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of rectangular folded-waveguide slow-wave structure was developed using conformal mapping technique through Schwarz's polygon transformation and closed form expressions for the lumped capacitance and inductance per period of the slow-wave structure were derived in terms of the physical dimensions of the structure, incorporating the effects of the beam hole in the lumped parameters. The lumped parameters were subsequently interpreted for obtaining the dispersion and interaction impedance characteristics of the structure. The analysis was benchmarked for two typical millimeter-wave structures, one operating in Ka-band and the other operating in Q-band, against measurement and 3D electromagnetic modeling using MAFIA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognizing similarities and deriving relationships among protein molecules is a fundamental requirement in present-day biology. Similarities can be present at various levels which can be detected through comparison of protein sequences or their structural folds. In some cases similarities obscure at these levels could be present merely in the substructures at their binding sites. Inferring functional similarities between protein molecules by comparing their binding sites is still largely exploratory and not as yet a routine protocol. One of the main reasons for this is the limitation in the choice of appropriate analytical tools that can compare binding sites with high sensitivity. To benefit from the enormous amount of structural data that is being rapidly accumulated, it is essential to have high throughput tools that enable large scale binding site comparison. Results: Here we present a new algorithm PocketMatch for comparison of binding sites in a frame invariant manner. Each binding site is represented by 90 lists of sorted distances capturing shape and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and an extensive validation of the algorithm have been carried out. A comparison with other site matching algorithms is also presented. Perturbation studies where the geometry of a given site was retained but the residue types were changed randomly, indicated that chance similarities were virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient to discriminate between diverse binding sites, unless combined with chemical nature of amino acids. Conclusion: A new algorithm has been developed to compare binding sites in accurate, efficient and high-throughput manner. Though the representation used is conceptually simplistic, we demonstrate that along with the new alignment strategy used, it is sufficient to enable binding comparison with high sensitivity. Novel methodology has also been presented for validating the algorithm for accuracy and sensitivity with respect to geometry and chemical nature of the site. The method is also fast and takes about 1/250(th) second for one comparison on a single processor. A parallel version on BlueGene has also been implemented.