955 resultados para Microscopie à balayage à effet tunnel
Resumo:
The twin-tunnel construction of the Jubilee Line Extension tunnels beneath St James's Park was simulated using coupled-consolidation finite-element analyses. The effect of defining different permeabilities for the final consolidation stage was investigated, and the performance of a fissure softening model was also evaluated. The analyses suggested an unexpectedly high permeability anisotropy for soil around the tunnel crown, possibly due to stress-induced permeability changes, or low-permeability laminations. Also, the permeability profile and lining conductivity were found to differ between the tunnels. Inclusion of the fissure model gave a narrower settlement trough, more alike that in the field, by preferentially softening simple shear behaviour. Long-term settlements at the site continue to increase at an unexpectedly high rate, suggesting the possibility of creep or unexpected soil softening during excavation. © 2012 Taylor & Francis Group.
Resumo:
We report on the topographical and electrical characterisations of 1 nm thick Al2O3 dielectric films on graphene. The Al 2O3 is grown by sputtering a 0.6 nm Al layer on graphene and subsequentially oxidizing it in an O2 atmosphere. The Al 2O3 layer presents no pinholes and is homogeneous enough to act as a tunnel barrier. A resistance-area product in the mega-ohm micrometer-square range is found. Comparatively, the growth of Al 2O3 by evaporation does not lead to well-wetted films on graphene. Application of this high quality sputtered tunnel barrier to efficient spin injection in graphene is discussed. © 2012 American Institute of Physics.
Planning the handling of tunnel excavation material - A process of decision making under uncertainty
Resumo:
We examine the effects of varying the tunnel width to height ratio on the shock boundary layer interac-tion of an incident oblique shock with a turbulent boundary layer. The computational domain is a simpli-fied representation of typical wind tunnel experiments; the top wall of the tunnel is not modeled; only the flow conditions imposed by the shock are modeled on the top of the computational domain. A hy-pothesis of the expected effect of width to height ratio is presented and tested computationally. All flows are found to be three dimensional for the single shock strength range of width to height ratios considered. The effect of tunnel width is a function of the boundary layer thickness which decreases the effective width.
Resumo:
The behaviour of cast-iron tunnel segments used in London Underground tunnels was investigated using the 3-D finite element (FE) method. A numerical model of the structural details of cast-iron segmental joints such as bolts, panel and flanges was developed and its performance was validated against a set of full-scale tests. Using the verified model, the influence of structural features such as caulking groove and bolt pretension was examined for both rotational and shear loading conditions. Since such detailed modelling of bolts increases the computational time when a full scale segmental tunnel is analysed, it is proposed to replace the bolt model to a set of spring models. The parameters for the bolt-spring models, which consider the geometry and material properties of the bolt, are proposed. The performance of the combined bolt-spring and solid segmental models are evaluated against a more conventional shell-spring model. © 2014 Elsevier Ltd.
Resumo:
This paper presents a three-dimensional comprehensive model for the calculation of vibration in a building based on pile-foundation due to moving trains in a nearby underground tunnel. The model calculates the Power Spectral Density (PSD) of the building's responses due to trains moving on floating-slab tracks with random roughness. The tunnel and its surrounding soil are modelled as a cylindrical shell embedded in half-space using the well-known PiP model. The building and its piles are modelled as a 2D frame using the dynamic stiffness matrix. Coupling between the foundation and the ground is performed using the theory of joining subsystems in the frequency domain. The latter requires calculations of transfer functions of a half-space model. A convenient choice based on the thin-layer method is selected in this work for the calculations of responses in a half-space due to circular strip loadings. The coupling considers the influence of the building's dynamics on the incident wave field from the tunnel, but ignores any reflections of building's waves from the tunnel. The derivation made in the paper shows that the incident vibration field at the building's foundation gets modified by a term reflecting the coupling and the dynamics of the building and its foundation. The comparisons presented in the paper show that the dynamics of the building and its foundation significantly change the incident vibration field from the tunnel and they can lead to loss of accuracy of predictions if not considered in the calculation.
Resumo:
The development of infrastructure in major cities often involves tunnelling, which can cause damage to existing structures. Therefore, these projects require a careful prediction of the risk of settlement induced damage. The simplified approach of current methods cannot account for three-dimensional structural aspects of buildings, which can result in an inaccurate evaluation of damage. This paper investigates the effect of the building alignment with the tunnel axis on structural damage. A three-dimensional, phased, fully coupled finite element model with non-linear material properties is used as a tool to perform a parametric study. The model includes the simulation of the tunnel construction process, with the tunnel located adjacent to a masonry building. Three different type of settlements are included (sagging, hogging and a combination of them), with seven different increasing angles of the building with respect to the tunnel axis. The alignment parameter is assessed, based on the maximum occurring crack width, measured in the building. Results show a significant dependency of the final damage on the building and tunnel alignment.
Resumo:
The assessment of settlement induced damage on buildings during the preliminary phase of tunnel excavation projects, is nowadays receiving greater attention. Analyses at different levels of detail are performed on the surface building in proximity to the tunnel, to evaluate the risk of structural damage and the need of mitigation measures. In this paper, the possibility to define a correlation between the main parameters that influence the structural response to settlement and the potential damage is investigated through numerical analysis. The adopted 3D finite element model allows to take into account important features that are neglected in more simplified approaches, like the soil-structure interaction, the nonlinear behaviour of the building, the three dimensional effect of the tunnelling induced settlement trough and the influence of openings in the structure. Aim of this approach is the development of an improved classification system taking into account the intrinsic vulnerability of the structure, which could have a relevant effect on the final damage assessment. Parametric analyses are performed, focusing on the effect of the orientation and the position of the structure with respect to the tunnel. The obtained results in terms of damage are compared with the Building Risk Assessment (BRA) procedure. This method was developed by Geodata Engineering (GDE) on the basis of empirical observations and building monitoring and applied during the construction of different metro lines in urban environment. The comparison shows a substantial agreement between the two procedures on the influence of the analysed parameters. The finite element analyses suggest a refinement of the BRA procedure for pure sagging conditions.