878 resultados para Mexican fruit-fly.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mating preferences are common in natural populations, and their divergence among populations is considered an important source of reproductive isolation during speciation. Although mechanisms for the divergence of mating preferences have received substantial theoretical treatment, complementary experimental tests are lacking. We conducted a laboratory evolution experiment, using the fruit fly Drosophila serrata, to explore the role of divergent selection between environments in the evolution of female mating preferences. Replicate populations of D. serrata were derived from a common ancestor and propagated in one of three resource environments: two novel environments and the ancestral laboratory environment. Adaptation to both novel environments involved changes in cuticular hydrocarbons, traits that predict mating success in these populations. Furthermore, female mating preferences for these cuticular hydrocarbons also diverged among populations. A component of this divergence occurred among treatment environments, accounting for at least 17.4% of the among- population divergence in linear mating preferences and 17.2% of the among-population divergence in nonlinear mating preferences. The divergence of mating preferences in correlation with environment is consistent with the classic by- product model of speciation in which premating isolation evolves as a side effect of divergent selection adapting populations to their different environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various factors can influence the population dynamics of phytophages post introduction, of which climate is fundamental. Here we present an approach, using a mechanistic modelling package (CLIMEX), that at least enables one to make predictions of likely dynamics based on climate alone. As biological control programs will have minimal funding for basic work (particularly on population dynamics), we show how predictions can be made using a species geographical distribution, relative abundance across its range, seasonal phenology and laboratory rearing data. Many of these data sets are more likely to be available than long-term population data, and some can be incorporated into the exploratory phase of a biocontrol program. Although models are likely to be more robust the more information is available, useful models can be developed using information on species distribution alone. The fitted model estimates a species average response to climate, and can be used to predict likely geographical distribution if introduced, where the agent is likely to be more abundant (i.e. good locations) and more importantly for interpretation of release success, the likely variation in abundance over time due to intra- and inter-year climate variability. The latter will be useful in predicting both the seasonal and long-term impacts of the potential biocontrol agent on the target weed. We believe this tool may not only aid in the agent selection process, but also in the design of release strategies, and for interpretation of post-introduction dynamics and impacts. More importantly we are making testable predictions. If biological control is to become more of a science making and testing such hypothesis will be a key component.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ethanol, classified as a drug, affects the central nervous system, and its consumption has been linked to the development of several behaviours including tolerance and dependence. Alcohol tolerance is defined as the need for higher doses of alcohol to induce the same changes observed in the initial exposure or where repetitive exposures of the same alcohol dose induce a lower response. Ethanol has been shown to interact with numerous targets and ultimately influence both short and long term adaptation at the cellular and molecular level in brain [1]. These adaptation processes are likely to involve signalling molecules: our work has focussed on G proteins gene expression. Using both wild type and several mutant fruit fly (Drosophila melanogaster) as a model for behaviour and molecular studies, we observed significant increases in sedation time (ST50) in response to alcohol (P<0.001) Fig.A. We also observed a consistent and significant decrease of Gq protein mRNA expression in Drosophila dUNC and DopR2 mutants chronically exposed to alcohol (*P<0.05). Fig B. Method: Six male flies were observed in drosophila polystyrene 25 x 95mm transparent vial in between cotton plugs. To the top plug, 500uL of 100% ethanol was added. Time till 50% of the flies were sedated was recorded on each day following the schedule. Fig. C (n=4-6). Using RT-PCR, we also quantified G protein mRNA expression levels one hour post initial 30 minutes of ethanol expression on day 1 and day 3 relative to expression in naïve flies.(n=2) [A] Increase in sedation time indicative of tolerance in different mutant lines and wild type flies. Six male flies were used in each experiment and (n= 4-6. ***P<0.001 unpaired t tests). [B] RT-PCR results showing significant reduction in Gq mRNA in flies chronically exposed to alcohol. (n=2. *P<0.05) [C] Alcohol exposure schedule. (1) Kaun K.R., R. Azanchi, Z. Maung, J. Hirsh, U. Heberlein. (2011). A Drosophila model for alcohol reward. Nature Neuroscience. 14 (5), 612–619.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metazoans rely on efficient mechanisms to oppose infections caused by pathogens. The immediate and first-line defense mechanism(s) in metazoans, referred to as the innate immune system, is initiated upon recognition of microbial intruders by germline encoded receptors and is executed by a set of rapid effector mechanisms. Adaptive immunity is restricted to vertebrate species and it is controlled and assisted by the innate immune system. Interestingly, most of the basic signaling cascades that regulate the primeval innate defense mechanism(s) have been well conserved during evolution, for instance between humans and the fruit fly, Drosophila melanogaster. Being devoid of adaptive signaling and effector systems, Drosophila has become an established model system for studying pristine innate immune cascades and reactions. In general, an immune response is evoked when microorganisms pass the fruit fly’s physical barriers (e.g. cuticle, epithelial lining of gut and trachea), and it is mainly executed in the hemolymph, the equivalent of the mammalian blood. Innate immunity in the fruit fly consists of a phenoloxidase (PO) response, a cellular response (hemocytes), an antiviral response, and the NF-κB dependent production of antimicrobial peptides referred to as the humoral response. The JAK/STAT and Jun kinase signaling cascades are also implicated in the defence against pathogens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) is a major horticultural insect pest in Australia which significantly limits domestic and international market access for Australian horticultural produce. Citrus is one of the industries seriously affected by the fruit fly problem in Australia. This research investigated the effect of citrus peel essential oil chemicals on B. tryoni larval survival in five different commercially important Citrus species and cultivars as a way of better understanding fruit susceptibility. The fruits used were Murcott Mandarin, Navel orange, Eureka lemon, Valencia orange and yellow grapefruit. The essential oils of each citrus type were extracted using hydrodistillation and then mixed, at different concentrations, with artificial larval diets to which B. tryoni eggs were added. Surviving larvae were counted after five trial days. The same process was repeated for six essential oil components. Regression analysis of increasing oil concentration against larval survival showed that the crude oil blends of Navel orange, Eureka lemon and yellow grapefruit had significant negative effects on B. tryoni larval survival, but no such effects were seen for Murcott Mandarin and Valencia orange. Of the individual essential oil fractions, only D-limonene had a significant effect on B. tryoni larval survival, with this chemical being highly toxic at very low concentrations. The results of this study open up opportunities for incorporating B. tryoni resistance mechanisms into citrus through minor peel property changes which would not impact on the eating attributes of the fruit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A proteinaceous trypsin inhibitor was purified from Crotalaria pallida seeds by ammonium sulphate fractionation, affinity chromatography on immobilized Trypsin-Sepharose and TCA precipitation. The trypsin inhibitor, named ITC, had Mr of 32.5 kDa by SDS-PAGE and was composed by two subunits with 27.7 and 5.6 kDa linked by disulphide bridges, a typical characteristic of Kunitz-Inhibitor family. ITC was stable until 50°C, and at 100°C its residual activity was of about 60%. Also, ITC was stable at pHs 2 to 12. The inhibition of trypsin by ITC was non-competitive, with a Ki of 8,8 x 10-7M. ITC inhibits weakly other serine proteinases such as chymotrypsin and elastase. The inhibition of papain (44% of inhibition), a cysteine proteinase was an indicative of the bi-functionality of ITC. In vitro assays against digestive proteinases from several Lepdoptera, Diptera and Coleoptera pests were made. ITC inhibited in 100% digestive enzymes of Ceratitis capitata (fruit fly), Spodoptera frugiperda and Alabama argillacea, the last one being a cotton pest. It also inhibited in 74.4% Callosobruchus maculatus (bean weevil) digestive enzymes, a Coleoptera pest. ITC, when added in artificial diet models, affected weakly the development of C. capitata larvae and it had a WD50 of 2.65% to C. maculatus larvae

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fruit fly Ceratitis capitata is considered the most destructive pest of the world fruitculture. Many pest management practices, mainly based on agrochemicals, have been developed to allow the world-wide commerce of fruit. Solutions to decrease the use of synthetic insecticides in agriculture are based on the development of new target-specific compounds which cause less damage to the environment, especially vegetal proteins with insecticidal effects. The aim of this work was to evaluate the deleterious effect of a purified vicilin of E. velutina (EvV) seeds to C. capitata larvae and adult insects and to investigate the mechanisms involved in these effects. EvV was purified, characterized and its deleterious effect was tested in bioassay systems. EvV mechanism of action was determined by immunodetection techniques and fluorescence localization in chitin structures that are present in C. capitata digestory system. EvV is a glycoprotein with affinity to chitin. Its molecular weight, of 216,57 kDa, was determined by gel filtration chromatography in FPLC system. Using SDS-PAGE, it was possible to observe EvV dissociation in two main subunits of 54,8 and 50,8 kDa. When it was submitted to eletrophoresis in native conditions, EvV presented only one band of acid characteristic. The WD50 and LD50 values found in the bioassays were 0,13% and 0,14% (w/w), respectively for the larvae. EvV deleterious effects were related to the binding to chitin structures presented in peritrophic membrane and gut epithelial cells, associated with its low digestibility in C. capitata digestive tract. The results described herein are the first demonstration of the larvicidal effects of plant protein on C. capitata larvae. EvV may be part of the pest management programs, in the toxic bait composition, or an alternative in plant improvement program

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2016.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumo: Anastrepha fraterculus (. Wied) é a principal praga de uvas de mesa (Vitis vinifera) na Região Sul do Brasil. Neste estudo, o objetivo foi investigar o efeito da punção de frutas por fêmeas adultas e infestação larvária por A. fraterculus na ocorrência da doença podridões na uva (cultivar "Itália"). Abstract: Anastrepha fraterculus (Wied.) is the main insect pest of table grapes (Vitis vinifera) in the Southern Region of Brazil. In this study, we aimed to investigate the effect of fruit puncturing by adult females and larval infestation by A. fraterculus on the occurrence of bunch rot disease in the grape (cultivar ?Itália?) by evaluating grapes (a) punctured for oviposition by females of A. fraterculus, sterilized in laboratory with novaluron (40 mg L−1) and further spray-inoculated separately with Botrytis cinerea (1 × 106 conidia mL−1), Glomerella cingulata (1 × 106 conidia mL−1), and bacteria and yeast that cause sour rot (1 × 105 cells mL−1), (b) grapes punctured for oviposition by non-sterilized females with pathogen spraying, (c) grapes with mechanical wounds and pathogen spraying, (d) grapes with no wounds and with pathogen spraying, (e) grapes punctured for oviposition by A. fraterculus chemically sterilized in laboratory with novaluron, (f) grapes punctured for oviposition by A. fraterculus non-sterilized in laboratory with novaluron, (g) grapes with mechanical wounds, and (h) grapes with no sterilization or pathogen spraying. Our data indicated that the mechanical and oviposition wounds caused by A. fraterculus increased the percentage of grapes infected by B. cinerea, G. cingulata, and microorganisms of acid rot. The grape puncturing by A. fraterculus and the mechanical wound allows the penetration of B. cinerea and microorganisms leading to acid rot. We conclude that the fruit fly A. fraterculus may facilitate phytopathogens penetration leading to bunch rots in the table grape Itália.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Drosophila suzukii is a primary insect pest that causes direct damage to fruits with a thin epidermis such as strawberries, cherries and blueberries. In strawberry fields, the co-occurrence of D. suzukii and Zaprionus indianus has increased production losses. This study evaluated the toxicities and effects of insecticidal baits to control adults and larvae of both D. suzukii and Z. indianus . RESULTS: Organophosphate (dimethoate and malathion), spinosyn (spinosad and spinetoram), pyrethroid (lambda-cyhalothrin) and diamide (cyantraniliprole) insecticides exhibited high toxicity to both adults and larvae of D. suzukii and Z. indianus (mortality > 80%) in topical and dip bioassays. However, when the insecticides were mixed with a feeding attractant, a positive effect was observed only for adults of D. suzukii . Insecticides containing neonicotinoids (acetamiprid and thiamethoxam) and pyrolle (chlorfenapyr) caused intermediate mortality to adults of D. suzukii (40?60%) and low mortality for Z. indianus (mortality < 23%); however, these compounds reduced the larval infestation of the two species by 55?86%. Botanical (azadirachtin) and sulphur insecticides exhibited low toxicity (mortality < 40%) on adults and larvae of both species. CONCLUSION: Dimethoate, malathion, spinosad, spinetoram, lambda-cyhalothrin and cyantraniliprole are highly toxic to both larvaeandadultsof D. suzukii and Z.indianus .Theuseoftoxicbaitsforadultsof D. suzukii couldbeanalternativeinmanagement of this species. © 2016 Society of Chemical Industry Keywords: spotted-wing drosophila; fig fly; chemical control; strawberry; toxic bait; pest control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Field infestation and spatial distribution of introduced Bactrocera carambolae Drew and Hancock and native species of Anastrepha in common guavas [Psidium guajava (L.)] were investigated in the eastern Amazon. Fruit sampling was carried out in the municipalities of Calc¸oene and Oiapoque in the state of Amapa, Brazil. The frequency distribution of larvae in fruit was fitted to the negative binomial distribution. Anastrepha striata was more abundant in both sampled areas in comparison to Anastrepha fraterculus (Wiedemann) and B. carambolae. The frequency distribution analysis of adults revealed an aggregated pattern for B. carambolae as well as for A. fraterculus and Anastrepha striata Schiner, described by the negative binomial distribution. Although the populations of Anastrepha spp. may have suffered some impact due to the presence of B. carambolae, the results are still not robust enough to indicate effective reduction in the abundance of Anastrepha spp. caused by B. carambolae in a general sense. The high degree of aggregation observed for both species suggests interspecific co-occurrence with the simultaneous presence of both species in the analysed fruit. Moreover, a significant fraction of uninfested guavas also indicated absence of competitive displacement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Drosophila suzukii is a primary insect pest that causes direct damage to fruits with a thin epidermis such as strawberries, cherries and blueberries. In strawberry fields, the co-occurrence of D. suzukii and Zaprionus indianus has increased production losses. This study evaluated the toxicities and effects of insecticidal baits to control adults and larvae of both D. suzukii and Z. indianus . RESULTS: Organophosphate (dimethoate and malathion), spinosyn (spinosad and spinetoram), pyrethroid (lambda-cyhalothrin) and diamide (cyantraniliprole) insecticides exhibited high toxicity to both adults and larvae of D. suzukii and Z. indianus (mortality > 80%) in topical and dip bioassays. However, when the insecticides were mixed with a feeding attractant, a positive effect was observed only for adults of D. suzukii . Insecticides containing neonicotinoids (acetamiprid and thiamethoxam) and pyrolle (chlorfenapyr) caused intermediate mortality to adults of D. suzukii (40?60%) and low mortality for Z. indianus (mortality < 23%); however, these compounds reduced the larval infestation of the two species by 55?86%. Botanical (azadirachtin) and sulphur insecticides exhibited low toxicity (mortality < 40%) on adults and larvae of both species. CONCLUSION: Dimethoate, malathion, spinosad, spinetoram, lambda-cyhalothrin and cyantraniliprole are highly toxic to both larvaeandadultsof D. suzukii and Z.indianus .Theuseoftoxicbaitsforadultsof D. suzukii couldbeanalternativeinmanagement of this species. © 2016 Society of Chemical Industry Keywords: spotted-wing drosophila; fig fly; chemical control; strawberry; toxic bait; pest control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a suscetibilidade de genótipos de videira à drosófila?da?asamanchada, Drosophila suzukii (Diptera: Drosophilidae), em bagas de uva intactas e em bagas infestadas após a ocorrência de puncturas, causadas pela oviposição da mosca?das?frutas sul?americana [Anastrepha fraterculus (Diptera: Tephritidae)] ou por danos mecânicos (alfinetes). Os experimentos foram realizados em laboratório, a 22±1°C, umidade relativa de 65±10% e fotófase de 12 horas. A suscetibilidade foi avaliada para 18 genótipos de videira, em bagas intactas submetidas às fêmeas de D. suzukii. O potencial de interação foi verificado em bagas de uva 'Italia', cuja epiderme foi danificada por puncturas de A. fraterculus ou por alfinete, em comparação a frutos de morango 'Albion'. As cultivares de Vitis labrusca 'Niagara Rosada' e 'Concord' não foram infestadas por D. suzukii, e cinco dos oito genótipos que foram infestados são cultivares melhoradas. A infestação de D. suzukii em bagas de uva 'Italia' com danos mecânicos, feitos com um alfinete ou pela oviposição de A. fraterculus, foi semelhante à de bagas íntegras. Há baixa adequação hospedeira de videiras a D. suzukii, mesmo com a presença de danos. As cultivares 'Benitaka', 'BRS Vitória' e 'BRS Morena' são as mais suscetíveis a D. suzukii.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although dietary patterns and their association with health outcomes is not a new topic, they have not been widely studied in Mexican-American populations. There are no studies of fruit and vegetable dietary patterns related to weight loss in Mexican-American women. This study aims to examine whether a change in proportion of fruit and vegetable consumption results in a change in weight. A secondary data analysis of 208 overweight or obese Mexican-American women from the Unidos en Salud weight loss intervention study was performed to investigate this relationship. Through regression analysis, the change in weight for every unit change in proportion of fruits and vegetables was tested with appropriate adjustment for age. The results showed a significant inverse association between fruit and vegetable intake densities and weight change. These results support previous studies and provide a possible effective and efficient method to reduce body mass index (BMI) among overweight or obese Mexican-American women. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.