814 resultados para Metabolic flexibility
Resumo:
Correct classification of different metabolic cycle stages to identification cell cycle is significant in both human development and clinical diagnostics. However, it has no perfect method has been reached in classification of metabolic cycle yet. This paper exploringly puts forward an automatic classification method of metabolic cycle based on Biomimetic pattern recognition (BPR). As to the three phases of yeast metabolic cycle, the correct classification rate reaches 90%, 100% and 100% respectively.
Resumo:
The effects ofdisk flexibility and multistage coupling on the dynamics of bladed disks with and without blade mistuning are investigated. Both free and forced responses are examined using finite element representations of example single and two-stage rotor models. The reported work demonstrates the importance of proper treatment of interstage (stage-to-stage) boundaries in order to yield adequate capture of disk-blade modal interaction in eigenfrequency veering regions. The modified disk-blade modal interactions resulting from interstage-coupling-induced changes in disk flexibility are found to have a significant impact on (a) tuned responses due to excitations passing through eigenfrequency veering regions, and (b) a design's sensitivity to blade mistuning. Hence, the findings in this paper suggest that multistage analyses may be required when excitations are expected to fall in or near eigenfrequency veering regions or when the sensitivity to blade mistuning is to be accounted for Conversely, the observed sensitivity to disk flexibility also indicates that the severity of unfavorable structural interblade coupling may be reduced significantly by redesigning the disk(s) and stage-to-stage connectivity. The relatively drastic effects of such modifications illustrated in this work indicate that the design modifications required to alleviate veering-related response problems may be less comprehensive than what might have been expected.
Resumo:
Through tuning the length of flexible bis(triazole) ligands and different metal ion coordination geometries, four Wells-Dawson polyoxoanion-based hybrid compounds, [Cu-6(btp)(3)(P2W18O62)] center dot 3H(2)O (1) (btp = 1,3-bis(1,2,4-triazol-1-yl)propane), [Cu-6(btb)(3)((P2W18O62) center dot 2H(2)O (2), [Cu-3(btb)(6)(P2W18O62)] center dot 6H(2)O (btb = 1,4-bis(1,2,4-triazol-1-yl)butane) (3), and [Cu-3(btx)(5.5)((P2W18O62) center dot 4H(2)O (btx = 1,6-bis(1,2,4-triazol-1-yl)hexane) (4), were synthesized and structurally characterized. in compound 1, the metal-organic motif exhibits a ladder-like chain, which is further fused by the ennead-dentate [P2W18O62](6-) anions to construct a 3D structure. In compound 2, the metal-organic motif exhibits an interesting Cu-btb grid layer, and the ennead-dentate polyoxoanions are sandwiched by two Cu-btb layers to construct a 3D structure
Resumo:
Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats.
Resumo:
The title compound, {[Mn(C10H28N6)][Sn3Se7]}(n), consists of anionic (infinity){[Sn3Se7](2-)} layers interspersed by [Mn(peha)](2+) complex cations ( peha is pentaethylenehexamine). Pseudo-cubic (Sn3Se4) cluster units within each layer are held together to form a 6(3) net with a hole size of 8.74 x 13.87 angstrom. Weak N-H center dot center dot center dot Se interactions between the host inorganic frameworks and metal complexes extend the components into a three-dimensional network. The incorporation of metal complexes into the flexible anion layer dictates the distortion of the holes.
Resumo:
The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of H-1 NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. H-1 NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the Perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar.
Resumo:
Metabolic profiling of serum from gadolinium chloride (GdCl3, 10 and 50 mg/kg body weight, intraperitoneal [i.p.])-treated rats was investigated by the NMR spectroscopic-based metabonomic strategy. Serum samples were collected at 48, 96, and 168 h postdose (p.d.) after exposure to GdCl3. H-1 NMR spectra of serum were analyzed by pattern recognition using principal components analysis. The studies showed that there was a dose-related biochemical effect of GdCl3 treatment on the levels of a range of low-molecular weight compounds in serum. The liver damage induced by GdCl3 was characterized by the elevation of lactate, pyruvate, and creatine as well as the decrease of branched-chain amino acids (valine and isoleucine), alanine, glucose, and trimethylamine-N-oxide concentration in serum samples. The biochemical effects of GdCl3 in rats could be consulted when evaluating the biochemical profile of gadolinium-containing compounds that are being developed for nuclear magnetic resonance imaging.
Resumo:
Effects of chain flexibility on the conformation of homopolymers in good solvents have been investigated by Monte Carlo simulation. Bond angle constraint coupled with persistence length of polymer chains has been introduced in the modified eight-site bond fluctuation simulation model. The study about the effects of chain flexibility on polymer sizes reveals that the orientation of polymer chains under confinement is driven by the loss of conformation entropy. The conformation of polymer chains undergoing a gradual change from spherical iso-diametric ellipsoid to rodlike iso-diametric ellipsoid with the decrease of polymer chain flexibility in a wide region has been clearly illustrated from several aspects. Furthermore, a comparison of the freely jointed chain (FJC) model and the wormlike chain (WLC) model has also been made to describe the polymer sizes in terms of chain flexibility and quasi-quantitative boundary toward the suitability of the models.
Resumo:
Radiation crosslinking of polymers mainly depends on the structure of polymer chain. The flexibility and mobility of chain directly influence the possibility of the reactive radicals recombination. Flexible chain is easier to crosslink than rigid-chain polymer. The latter must be crosslinked at high temperature, as most polymers can only crosslink above their melting point. Structural effect also influences the mechanism of radiation crosslinking of polymers. We find from the results in literature and in our laboratory that, the flexibility chain polymer mainly crosslinked with H type, but the rigid chain polymer mainly crosslinked with Y type. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
Metabolic characteristics of the sea cucumber Aposticholpus japonicus (Selenka) during aestivation were studied in the laboratory. The effects of water temperature on oxygen consumption rate (OCR) and ammonia-N excretion rate (AER) in A. japonicus were determined by the Winkler and Hypobromite methods, respectively. Mature (large, 148.5 +/- 15.4 g, medium 69.3 +/- 6.9 g) and immature (small, 21.2 +/- 4.7 g) individuals aestivated at water temperatures of 20 and 25 degrees C, respectively. The metabolic characteristics of mature individuals were different from immature individuals during this period. The OCR of mature sea cucumbers peaked at 20 degrees C, and then dropped significantly at higher temperatures, whereas the OCR of the immature animals continued to increase slightly, even beyond the aestivation temperature. The AER of mature individuals peaked at 20 T, while that of the immature animals peaked at 25 degrees C. The relationships between dry weight (DW) and absolute oxygen consumption (R) and absolute ammonia-N excretion (N) could be described by the regression equation R or N=aW(b). With the exception of 15 degrees C, the O/N ratios (calculated in atomic equivalents) of large size sea cucumbers was close to 20 across the temperatures used in this study, indicating that their energy Source was a combination of lipid and protein. Oil the other hand, apart from small individuals maintained at 10 degrees C, the O/N ratios of the medium and small sea Cucumbers were close to 10, indicating that protein was their major energy source. The O/N ratios in all size groups remained unchanged after aestivation was initiated. (c) 2005 Elsevier B.V. All rights reserved.