983 resultados para Mesosomal glands
Resumo:
Although “polymorphic castes” in social insects are well known as one of the most important phenomena of polyphenism, few studies of caste-specific gene expressions have been performed in social insects. To identify genes specifically expressed in the soldier caste of the Japanese damp-wood termite Hodotermopsis japonica, we employed the differential-display method using oligo(dT) and arbitrary primers, compared mRNA from the heads of mature soldiers and pseudergates (worker caste), and identified a clone (PCR product) 329 bp in length termed SOL1. Northern blot analysis showed that the SOL1 mRNA is about 1.0 kb in length and is expressed specifically in mature soldiers, but not in pseudergates, even in the presoldier induction by juvenile hormone analogue, suggesting that the product is specific for terminally differentiated soldiers. By using the method of 5′- and 3′-rapid amplification of cDNA ends, we isolated the full length of SOL1 cDNA, which contained an ORF with a putative signal peptide at the N terminus. The sequence showed no significant homology with any other known protein sequences. In situ hybridization analysis showed that SOL1 is expressed specifically in the mandibular glands. These results strongly suggest that the SOL1 gene encodes a secretory protein specifically synthesized in the mandibular glands of the soldiers. Histological observations revealed that the gland actually develops during the differentiation into the soldier caste.
Resumo:
The tsetse thrombin inhibitor, a potent and specific low molecular mass (3,530 Da) anticoagulant peptide, was purified previously from salivary gland extracts of Glossina morsitans morsitans (Diptera: Glossinidae). A 303-bp coding sequence corresponding to the inhibitor has now been isolated from a tsetse salivary gland cDNA library by using degenerate oligonucleotide probes. The full-length cDNA contains a 26-bp untranslated segment at its 5′ end, followed by a 63-bp sequence corresponding to a putative secretory signal peptide. A 96-bp segment codes for the mature tsetse thrombin inhibitor, whose predicted molecular weight matches that of the purified native protein. Based on its lack of homology to any previously described family of molecules, the tsetse thrombin inhibitor appears to represent a unique class of naturally occurring protease inhibitors. Recombinant tsetse thrombin inhibitor expressed in Escherichia coli and the chemically synthesized peptide are both substantially less active than the purified native protein, suggesting that posttranslational modification(s) may be necessary for optimal inhibitory activity. The tsetse thrombin inhibitor gene, which is present as a single copy in the tsetse genome, is expressed at high levels in salivary glands and midguts of adult tsetse flies, suggesting a possible role for the anticoagulant in both feeding and processing of the bloodmeal.
Resumo:
The orphan nuclear receptor steroidogenic factor 1 (SF-1) is expressed in the adrenal cortex and gonads and regulates the expression of several P450 steroid hydroxylases in vitro. We examined the role of SF-1 in the adrenal glands and gonads in vivo by a targeted disruption of the mouse SF-1 gene. All SF-1-deficient mice died shortly after delivery. Their adrenal glands and gonads were absent, and persistent Mullerian structures were found in all genotypic males. While serum levels of corticosterone in SF-1-deficient mice were diminished, levels of adrenocorticotropic hormone (ACTH) were elevated, consistent with intact pituitary corticotrophs. Intrauterine survival of SF-1-deficient mice appeared normal, and they had normal serum level of corticosterone and ACTH, probably reflecting transplacental passage of maternal steroids. We tested whether SF-1 is required for P450 side-chain-cleavage enzyme (P450scc) expression in the placenta, which expresses both SF-1 and P450scc, and found that in contrast to its strong activation of the P450scc gene promoter in vitro, the absence of SF-1 had no effect on P450scc mRNA levels in vivo. Although the region targeted by our disruption is shared by SF-1 and by embryonal long terminal repeat-binding protein (ELP), a hypothesized alternatively spliced product, we believe that the observed phenotype reflects absent SF-1 alone, as PCR analysis failed to detect ELP transcripts in any mouse tissue, and sequences corresponding to ELP are not conserved across species. These results confirm that SF-1 is an important regulator of adrenal and gonadal development, but its regulation of steroid hydroxylase expression in vivo remains to be established.
Resumo:
Association: Craig Colony for Epileptics.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Cover-title.
Resumo:
Mode of access: Internet.
Resumo:
Epidermal growth factor (EGF) in rat salivary glands is regulated by testosterone, thyroxin, and growth hormone (GH). Salivary glands of 45-day-old giant and dwarf male and female transgenic mice were examined histologically and by immunohistochemistry (IHC) for EGF. Male giants showed no significant differences from wild-type (WT) parotid and submandibular glands. However, their sublingual glands expressed EGF diffusely and strongly in granular cells within the striated ducts, where they were not found in WT mice. Submandibular gland ducts of female WT were different, having individual granular cells strongly positive for EGF and distributed sporadically along the striated duct walls. Neither female GH-antagonist dwarf mice nor GH-receptor knockout mice had any granular cells expressing EGF in any gland. Obvious presence of granular duct cells in the sublingual glands of giant male mice suggests GH-upregulated granular cell EGF expression. Furthermore, absence of granular duct cells from all glands in female GH-antagonist and GH-receptor knockout transgenic mice suggests that GH is necessary for the differentiation of the granular cell phenotype in female salivary glands.
Resumo:
Carpal glands (CG) of 105 feral pigs Sus domesticus, caught in the tropical lowland rainforest in northeast Queensland, Australia, between 1999 and 2004, were investigated to examine their function in chemical communication between animals, and their histology. Female feral pigs show significantly larger CG on the right leg than on the left leg while there were no side-specific differences in males. CG on both legs were significantly larger in reproductive than in non-reproductive females, but they did not differ between pregnant and lactating females. The results suggest that CG are involved in the defensive behaviour of reproductive females but not in the identification of the mother by piglets. The area of the left CG was significantly bigger in males compared to females, but no significant difference could be shown for the CG on the right legs. CG of same-aged boars did not change significantly in size throughout the year while females showed smaller CG on the left leg in January and February suggesting that CG may be involved in intra-matriarchal group communication, Same sized and aged boars did not show any correlations between the size of the CG and the weight of their testes and the serum levels of testosterone. These results suggest that CG are not involved in advertising dominance in boars. The histological investigation of CG showed that they are active in feral pigs in the lowland rainforest, consist mainly of apocrine tissue and that their hairs may play a role in distributing secretion.
Resumo:
Many marine reptiles and birds possess extrarenal salt glands that facilitate the excretion of excess sodium and chloride ions accumulated as a consequence of living in saline environments. Control of the secretory activity of avian salt glands is under neural control, but little information is available on the control of reptilian salt glands. Innervation of the lingual salt glands of the salt water crocodile, Crocodylus porosus, was examined in salt water-acclimated animals using histological methods. Extensive networks of both cholinergic and adrenergic nerve fibres were identified close to salt-secreting lobules and vasculature. The identification of both catecholamine-containing and cholinergic neurons in the salt gland epithelium and close to major blood vessels in the tissue suggests the action of the neurotransmitters on the salt-secreting epithelium itself and the rich vascular network of the lingual salt glands.