953 resultados para Membrane Transport Proteins


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc deficiency, causing impaired growth and development, may have a nutritional or genetic basis. We investigated two cases of inherited zinc deficiency found in breast-fed neonates, caused by low levels of zinc in the maternal milk. This condition is different from acrodermatitis enteropathica but has similarities to the "lethal milk" mouse, where low levels of zinc in the milk of lactating dams leads to zinc deficiency in pups. The mouse disorder has been attributed to a defect in the ZnT4 gene. Little is known about the expression of the human orthologue, hZnT4 (Slc30A4). Sequence analysis of cDNA, real-time PCR and Western blot analysis of hZnT4, carried out on control cells and cells from unrelated mothers of two infants with zinc deficiency, showed no differences. The hZnT4 gene was highly expressed in mouthwash buccal cells compared with lymphoblasts and fibroblasts. The hZnT4 protein did not co-localise with intracellular free zinc pools, suggesting that hZnT4 is not involved in transport of zinc into vesicles destined for secretion into milk. This observation, combined with phenotypic differences between the "lethal milk" mouse and the human disorder, suggests that the "lethal milk" mouse is not the corresponding model for the human zinc deficiency condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soluble protein hormones are key regulators of a number of metabolic processes, including food intake and insulin sensitivity. We have used a signal sequence trap to identify genes that encode secreted or membrane-bound proteins in Psammomys obesus, an animal model of obesity and type 2 diabetes (T2D). Using this signal sequence trap, we identified the chemokine chemerin as being a novel adipokine. Gene expression of chemerin and its receptor, chemokine-like receptor 1 (CMKLR1), was significantly higher in adipose tissue of obese and type 2 diabetic P. obesus compared with lean, normoglycemic P. obesus. Fractionation of P. obesus adipose tissue confirmed that chemerin was predominantly expressed in adipocytes, whereas CMKLR1 was expressed in both adipocytes and stromal-vascular cells of adipose tissue. In 3T3-L1 adipocytes, chemerin was markedly induced during differentiation, whereas CMKLR1 was down-regulated during differentiation. Serum chemerin levels were measured by ELISA in human plasma samples from 114 subjects with T2D and 142 normal glucose tolerant controls. Plasma chemerin levels were not significantly different between subjects with T2D and normal controls. However, in normal glucose tolerant subjects, plasma chemerin levels were significantly associated with body mass index, circulating triglycerides, and blood pressure. Here we report, for the first time, that chemerin is an adipokine, and circulating levels of chemerin are associated with several key aspects of metabolic syndrome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As adults, anadromous lampreys migrate from seawater into freshwater rivers, where they require branchial ion (NaCl) absorption for osmoregulation. In teleosts and elasmobranchs, pharmological, immunohistochemical, and molecular data support roles for Na+/K+-ATPase (NPPase), carbonic anhydrase II (CAII), and vacuolar H+-ATPase (V-ATPase) in two different models of branchial ion absorption. To our knowledge, these transport-related proteins have not been studied in adult freshwater lampreys, and therefore it is not known if they are expressed, or have similar functions, in lampreys. The purpose of this study was to localize NPPase, CAII, and V-ATPase in the gills of adult freshwater lampreys and determine if any of these transport-related proteins are expressed in the same cells. Heterologous antibodies were used to localize the three proteins in gill tissue from pouched lamprey (Geotria australis). Immunoreactivity (IR) for all three proteins occurred between, and at the base of, lamellae in cells that match previous descriptions of mitochondrion-rich-cells (MRCs). NPPase-IR was always on the basolateral side of cells that did not stain for CAII or V-ATPase. In contrast, CAII-IR was always on the apical side of cells that also contained diffuse V-ATPase-IR. Therefore, we have identified two types of MRC in adult freshwater lamprey gills based on immunohistochemical staining for three transport proteins. A model of ion transport, based on our results, is proposed for adult freshwater lampreys. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to determine the effects of high-glucose, high-fructose and high-sucrose diets on weight gain, liver lipid metabolism and gene expression of proteins involved with hepatic fat metabolism. Rats were fed a diet containing either 60% glucose, 60% fructose, 60% sucrose, or a standard chow for 28 days. Results indicated that high-fructose and high-sucrose diets were associated with higher mRNA levels of gene transcripts involved with fat synthesis; ACC, FAS and ChREBP, with no change in SREBP-1C mRNA. The protein level of ChREBP and SREBP1c was similar in liver homogenates from all groups, but were higher in nuclear fractions from the liver of high-fructose and high-sucrose fed rats. The mRNA level of gene transcripts involved with fat oxidation was the same in all three diets, whilst a high-fructose diet was associated with greater amount of mRNA of the fat transporter CD36. Despite the changes in mRNA of lipogenic proteins, the body weight of animals from each group was the same and the livers from rats fed high-fructose and high-sucrose diets did not contain more fat than control diet livers. In conclusion, changing the composition of the principal monosaccharide in the diet to a fructose containing sugar elicits changes in the level of hepatic mRNA of lipogenic and fat transport proteins and protein levels of their transcriptional regulators; however this is not associated with any changes in body weight or liver fat content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disturbances in brain copper result in rare and severe neurological disorders and may play a role in the pathogenesis and progression of multiple neurodegenerative diseases. Our current understanding of mammalian brain copper transport is based on model systems outside the central nervous system and no data are available regarding copper transport systems in the human brain. To address this deficit, we quantified regional copper concentrations and examined the distribution and cellular localization of the copper transport proteins Copper transporter 1, Atox1, ATP7A, and ATP7B in multiple regions of the human brain using inductively coupled plasma-mass spectrometry, Western blot and immunohistochemistry. We identified significant relationships between copper transporter levels and brain copper concentrations, supporting a role for these proteins in copper transport in the human brain. Interestingly, the substantia nigra contained twice as much copper than that in other brain regions, suggesting an important role for copper in this brain region. Furthermore, ATP7A levels were significantly greater in the cerebellum, compared with other brain regions, supporting an important role for ATP7A in cerebellar neuronal health. This study provides novel data regarding copper regulation in the human brain, critical to understand the mechanisms by which brain copper levels can be altered, leading to neurological disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project provides compelling evidence that the clusterin, COMMD1 and ApoE proteins function in the quality control of the essential copper-transport proteins ATP7A and ATP7B. This knowledge is significant because variations in the clusterin, COMMD1 or ApoE genes may explain the variability of patient symptoms in the copper-transport disorders, Menkes and Wilson diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rubber tree (Hevea brasiliensis) latex, the source of natural rubber, is synthesised in the cytoplasm of laticifers. Efficient water inflow into laticifers is crucial for latex flow and production since it is the determinant of the total solid content of latex and its fluidity after tapping. As the mature laticifer vessel rings are devoid of plasmodesmata, water exchange between laticifers and surrounding cells is believed to be governed by plasma membrane intrinsic proteins (PIPs). To identify the most important PIP aquaporin in the water balance of laticifers, the transcriptional profiles of ten-latex-expressed PIPs were analysed. One of the most abundant transcripts, designated HbPIP2;3, was characterised in this study. When tested in Xenopus laevis oocytes HbPIP2;3 showed a high efficiency in increasing plasmalemma water conductance. Expression analysis indicated that the HbPIP2;3 gene was preferentially expressed in latex, and the transcripts were up-regulated by both wounding and exogenously applied Ethrel (a commonly-used ethylene releaser). Although regular tapping up-regulated the expression of HbPIP2;3 during the first few tappings of the virginal rubber trees, the transcriptional kinetics of HbPIP2;3 to Ethrel stimulation in the regularly tapped tree exhibited a similar pattern to that of the previously reported HbPIP2;1 in the virginal rubber trees. Furthermore, the mRNA level of HbPIP2;3 was associated with clonal yield potential and the Ethrel stimulation response. Together, these results have revealed the central regulatory role of HbPIP2;3 in laticifer water balance and ethylene stimulation of latex production in Hevea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Epidermoid Carcinoma (EC) is the most common lesions located in the region of the head and neck and, despite advances in treatment modalities, the prognosis is still poor. The malignant cells show an increase in glucose uptake, process mediated by glucose transporters (GLUTs). Increased expression of GLUT 1 and GLUT 3 is related to the aggressive behavior of this lesion. The aim of this study was to evaluate, through immunohistochemistry, the expression of GLUTs 1 and 3 in EC of the lower lip. The sample consisted of 40 cases of EC of the lower lip, of which 20 had regional lymph node metastasis and the remaining 20 with absence of metastasis. The percentages of immunostained cells in front of tumor invasion and in the center of tumor were evaluated. These results were related to the presence and absence of lymph node metastasis, TNM classification and histological grading. The percentage of cytoplasmic/membranous expression of GLUT 1 ranged from 77.35% to 100%, while for GLUT 3 this value ranged from 0.79% to 100%. As for nuclear staining for GLUT 1, this percentage ranged from 0 to 0.42%, however. GLUT 3 showed only one case with nuclear staining. Despite the significant expression of tumor cells related to the proteins studied, we observed no statistically significant relationship between the variables and the antibodies analyzed, regardless of the region evaluated. However, there was a moderate positive correlation between cytoplasmic/membranous immunoexpressions of GLUT 1 in invasion front and in the tumor center (r = 0.679, p <0.001). Similarly, moderate positive correlation was found between the nuclear immunoexpressions of GLUT 1 in the invasion front and in the tumor center (r = 0.547, p <0.001). For GLUT 3, was also observed a moderate statistically significant positive correlation between cytoplasmic/membranous expression in tumor invasion front and in tumor center (r = 0.589, p <0.001). We also observed that the immunoreactivity for GLUT 1 was higher than GLUT 3 expression in invasion front (p <0.001) and tumor center (p <0.001). From these results, this study suggests that tumor hypoxia is a remarkable characteristic of the EC of the lower lip and GLUT 1 may be primarily responsible for glucose uptake into the interior of the malignant cells

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trifluoperazine (TFP) (35 μM) prevents mitochondrial transmembrane potential (ΔΨ) collapse and swelling induced by 10 μM Ca2+ plus oxyradicals generated from δ-aminolevulinic acid autoxidation. In contrast with EGTA, TFP cannot restore the totally collapsed ΔΨ. So, TFP might not remove Ca2+ from its 'harmful site', but could impair the ROS-driven cross-linking between membrane -SH proteins. Our data are correlated with the protective uses of TFP against oxidative processes promoted by oxyradicals plus Ca2+.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied the synergistic effect of glucose and prolactin (PRL) on insulin secretion and GLUT2 expression in cultured neonatal rat islets. After 7 days in culture, basal insulin secretion (2.8 mM glucose) was similar in control and PRL-treated islets (1.84 ± 0.06% and 2.08 ± 0.07% of the islet insulin content, respectively). At 5.6 and 22 mM glucose, insulin secretion was significantly higher in PRL-treated than in control islets, achieving 1.38 ± 0.15% and 3.09 ± 0.21 % of the islet insulin content in control and 2.43 ± 0.16% and 4.31 ± 0.24% of the islet insulin content in PRL-treated islets, respectively. The expression of the glucose transporter GLUT2 in B-cell membranes was dose-dependently increased by exposure of the islet to increasing glucose concentrations. This effect was potentiated in islets cultured for 7 days in the presence of 2 μg/ml PRL. At 5.6 and 10 mM glucose, the increase in GLUT2 expression in PRL-treated islets was 75% and 150% higher than that registered in the respective control. The data presented here indicate that insulin secretion, induced by different concentrations of glucose, correlates well with the expression of the B-cell-specific glucose transporter GLUT2 in pancreatic islets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The immunological response includes wide contexts involving several cells, and the macrophage is crucial in the cellular immune response. Several stimuli to macrophage membrane may induce the liberation of H2O2, contributing to antibacterial and cytotoxicical actions. Nowadays, there is a tendency to study natural products to verify their capacity of acting in the immune system. This study evaluated the citotoxicity of the bulk extract and the hexanic and acetic fractions extracted from Styrax camporum Pohl (Styracaceae) and the production of H2O2, on murine peritonal macrophages cultures exposed to fractions extracted from this plant. The results showed that the fraction HX 2 mg/ml produced the liberation of H 2O2 in high concentrations and to 4 mg/ml was observed high citotoxicity. The fractions AC did not produce the liberation of H 2O2 and EB was produced in low levels. We conclude that this HX is a potent stimulator of macrophage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased GLUT2 gene expression in the renal proximal tubule of diabetic rats is an adaptive condition, which may be important in the diabetic nephropathy development. We investigated the effects of insulin treatment upon the renal GLUT2 overexpression of diabetic rats. Acute treatment, surprisingly, induced a rapid further increase in GLUT2 mRNA content. Twelve hours after insulin injection, GLUT2 mRNA was twice the value of saline-injected rats (P < 0.001), when GLUT2 protein remained unchanged. In response to short-term treatment, both GLUT2 mRNA and protein were increased in 1-day treated rats (P < 0.05 versus saline-injected), decreasing after that, and reaching, within 6 days, values close to those of non-diabetic rats. Concluding, insulin treatment induced: initially, an additional upregulation of GLUT2 gene expression, involving posttranscriptional modulation; thereafter, downregulation of GLUT2 expression, which returns to non-diabetic levels. The former may be related to increased insulin concentration, the latter may be due to glycemic control. © 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Moderate amounts of alcohol intake have been reported to have a protective effect on the cardiovascular system and this may involve enhanced insulin sensitivity. We established an animal model of increased insulin sensitivity by low ethanol consumption and here we investigated metabolic parameters and molecular mechanisms potentially involved in this phenomenon. For that, Wistar rats have received drinking water either without (control) or with 3% ethanol for four weeks. The effect of ethanol intake on insulin sensitivity was analyzed by insulin resistance index (HOMA-IR), intravenous insulin tolerance test (IVITT) and lipid profile. The role of liver was investigated by the analysis of insulin signaling pathway, GLUT2 gene expression and tissue glycogen content. Rats consuming 3% ethanol showed lower values of HOMA-IR and plasma free fatty acids (FFA) levels and higher hepatic glycogen content and glucose disappearance constant during the IVITT. Neither the phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), nor its association with phosphatidylinositol-3-kinase (PI3-kinase), was affected by ethanol. However, ethanol consumption enhanced liver IRS-2 and protein kinase B (Akt) phosphorylation (3 times, P < 0.05), which can be involved in the 2-fold increased (P < 0.05) hepatic glycogen content. The GLUT2 protein content was unchanged. Our findings point out that liver plays a role in enhanced insulin sensitivity induced by low ethanol consumption. © 2005 Elsevier Inc. All rights reserved.