958 resultados para Medicago-sativa L.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: Productivity and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. For these objectives the botanical composition of the swards is of particular importance, especially, the content of legumes due to their ability to fix airborne nitrogen. As it can vary considerably within a field, a non-destructive detection method while doing other tasks would facilitate a more targeted sward management and could predict the nitrogen supply of the soil for the subsequent crop. This study was undertaken to explore the potential of digital image analysis (DIA) for a non destructive prediction of legume dry matter (DM) contribution of legume-grass mixtures. For this purpose an experiment was conducted in a greenhouse, comprising a sample size of 64 experimental swards such as pure swards of red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) as well as binary mixtures of each legume with perennial ryegrass (Lolium perenne L.). Growth stages ranged from tillering to heading and the proportion of legumes from 0 to 80 %. Based on digital sward images three steps were considered in order to estimate the legume contribution (% of DM): i) The development of a digital image analysis (DIA) procedure in order to estimate legume coverage (% of area). ii) The description of the relationship between legume coverage (% area) and legume contribution (% of DM) derived from digital analysis of legume coverage related to the green area in a digital image. iii) The estimation of the legume DM contribution with the findings of i) and ii). i) In order to evaluate the most suitable approach for the estimation of legume coverage by means of DIA different tools were tested. Morphological operators such as erode and dilate support the differentiation of objects of different shape by shrinking and dilating objects (Soille, 1999). When applied to digital images of legume-grass mixtures thin grass leaves were removed whereas rounder clover leaves were left. After this process legume leaves were identified by threshold segmentation. The segmentation of greyscale images turned out to be not applicable since the segmentation between legumes and bare soil failed. The advanced procedure comprising morphological operators and HSL colour information could determine bare soil areas in young and open swards very accurately. Also legume specific HSL thresholds allowed for precise estimations of legume coverage across a wide range from 11.8 - 72.4 %. Based on this legume specific DIA procedure estimated legume coverage showed good correlations with the measured values across the whole range of sward ages (R2 0.96, SE 4.7 %). A wide range of form parameters (i.e. size, breadth, rectangularity, and circularity of areas) was tested across all sward types, but none did improve prediction accuracy of legume coverage significantly. ii) Using measured reference data of legume coverage and contribution, in a first approach a common relationship based on all three legumes and sward ages of 35, 49 and 63 days was found with R2 0.90. This relationship was improved by a legume-specific approach of only 49- and 63-d old swards (R2 0.94, 0.96 and 0.97 for red clover, white clover, and lucerne, respectively) since differing structural attributes of the legume species influence the relationship between these two parameters. In a second approach biomass was included in the model in order to allow for different structures of swards of different ages. Hence, a model was developed, providing a close look on the relationship between legume coverage in binary legume-ryegrass communities and the legume contribution: At the same level of legume coverage, legume contribution decreased with increased total biomass. This phenomenon may be caused by more non-leguminous biomass covered by legume leaves at high levels of total biomass. Additionally, values of legume contribution and coverage were transformed to the logit-scale in order to avoid problems with heteroscedasticity and negative predictions. The resulting relationships between the measured legume contribution and the calculated legume contribution indicated a high model accuracy for all legume species (R2 0.93, 0.97, 0.98 with SE 4.81, 3.22, 3.07 % of DM for red clover, white clover, and lucerne swards, respectively). The validation of the model by using digital images collected over field grown swards with biomass ranges considering the scope of the model shows, that the model is able to predict legume contribution for most common legume-grass swards (Frame, 1992; Ledgard and Steele, 1992; Loges, 1998). iii) An advanced procedure for the determination of legume DM contribution by DIA is suggested, which comprises the inclusion of morphological operators and HSL colour information in the analysis of images and which applies an advanced function to predict legume DM contribution from legume coverage by considering total sward biomass. Low residuals between measured and calculated values of legume dry matter contribution were found for the separate legume species (R2 0.90, 0.94, 0.93 with SE 5.89, 4.31, 5.52 % of DM for red clover, white clover, and lucerne swards, respectively). The introduced DIA procedure provides a rapid and precise estimation of legume DM contribution for different legume species across a wide range of sward ages. Further research is needed in order to adapt the procedure to field scale, dealing with differing light effects and potentially higher swards. The integration of total biomass into the model for determining legume contribution does not necessarily reduce its applicability in practice as a combined estimation of total biomass and legume coverage by field spectroscopy (Biewer et al. 2009) and DIA, respectively, may allow for an accurate prediction of the legume contribution in legume-grass mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two commercial enzyme products, Depol 40 (D) and Liquicell 2500 (L), were characterised from a biochemical standpoint and their potential to improve rumen degradation of forages was evaluated in vitro. Enzyme activities were determined at pH 5.5 and 39 degreesC. Analysis of the enzyme activities indicated that L contained higher xylanase and endoglucanase, but lower exoglucanase, pectinase and alpha-amylase activities than D. The Reading Pressure Technique (RPT) was used to investigate the effect of enzyme addition on the in vitro gas production (GP) and organic matter degradation (OMD) of alfalfa (Medicago sativa L.) stems and leaves. A completely randomised design with factorial arrangement of treatments was used. Both alfalfa fractions were untreated or treated with each enzyme at four levels, 20 h before incubation with rumen fluid. Each level of enzyme provided similar amounts of filter paper (D1, L1), endoglucanase (D2, L2), alpha-L-arabinofuranosidase (D3, L3) and xylanase units (D4, L4) per gram forage DM. Enzymes increased the initial OMD in both fractions, with improvements of up to 15% in leaves (D4) and 8% in stems (L2) after 12 h incubation. All enzyme treatments increased the extent of degradation (96 h incubation) in the leaf fractions, but only L2 increased final OMD in the stems. Direct hydrolysis of forage fractions during the pre-treatment period did not fully account for the magnitude of the increases in OMD, suggesting that the increase in rate of degradation was achieved through a combined effect of direct enzyme hydrolysis and synergistic action between the exogenous (applied) and endogenous (rumen) enzymes. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims Medicago sativa L. is widely grown in southern Australia, but is poorly adapted to dry, hot summers. This study aimed to identify perennial herbaceous legumes with greater resistance to drought stress and explore their adaptive strategies. Methods Ten herbaceous perennial legume species/accessions were grown in deep pots in a sandy, low-phosphorus field soil in a glasshouse. Drought stress was imposed by ceasing to water. A companion M. sativa plant in each pot minimised differences in leaf area and water consumption among species. Plants were harvested when stomatal conductance of stressed plants decreased to around 10% of well watered plants. Results A range of responses to drought stress were identified, including: reduced shoot growth; leaf curling; thicker pubescence on leaves and stems; an increased root:shoot ratio; an increase, decrease or no change in root distribution with depth; reductions in specific leaf area or leaf water potential; and osmotic adjustment. The suite of changes differed substantially among species and, less so, among accessions. Conclusions The inter- and intra-specific variability of responses to drought-stress in the plants examined suggests a wide range of strategies are available in perennial legumes to cope with drying conditions, and these could be harnessed in breeding/selection programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorus (P) deficiency is a major problem for Australian agriculture. Development of new perennial pasture legumes that acquire or use P more efficiently than the current major perennial pasture legume, lucerne (Medicago sativa L.), is urgent. A glasshouse experiment compared the response of ten perennial herbaceous legume species to a series of P supplies ranging from 0 to 384 µg g−1 soil, with lucerne as the control. Under low-P conditions, several legumes produced more biomass than lucerne. Four species (Lotononis bainesii Baker, Kennedia prorepens F.Muell, K. prostrata R.Br, Bituminaria bituminosa (L.) C.H.Stirt) achieved maximum growth at 12 µg P g−1 soil, while other species required 24 µg P g−1. In most tested legumes, biomass production was reduced when P supply was ≥192 µg g−1, due to P toxicity, while L. bainesii and K. prorepens showed reduced biomass when P was ≥24 µg g−1 and K. prostrata at ≥48 µg P g−1 soil. B. bituminosa and Glycine canescens F.J.Herm required less soil P to achieve 0.5 g dry mass than the other species did. Lucerne performed poorly with low P supply and our results suggest that some novel perennial legumes may perform better on low-P soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g–1) or (ii) the top 500 mm (12 µg P g–1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0–50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g–1, L. australis 2.4 mg g–1, M. sativa 3.2 mg g–1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endosperm of seeds of Sesbania virgata (Cav.) Pers. accumulates galactomannan as a cell wall storage polysaccharide. It is hydrolysed by three enzymes, one of them being alpha-galactosidase. A great amount of protein bodies is found in the cytoplasm of endospermic cells, which are thought to play the major role as a nitrogen reserve in this seed. The present work aimed at understanding how the production of enzymes that degrade storage compounds is controlled. We performed experiments with addition of inhibitors of transcription (actinomycin-d and alpha-amanitin) and translation (cycloheximide) during and after germination. In order to follow the performance of storage mobilisation, we measured fresh mass, protein contents and alpha-galactosidase activity. All the inhibitors tested had little effect on seed germination and seedling development. Actinomycin-d and cycloheximide provoked a slight inhibition of the storage protein degradation and concomitantly lead to an elevation of the alpha-galactosidase activity. Although alpha-amanitin showed some effect on seedling development at latter stages, it presented the former effect and did not change galactomannan degradation performance. Our data suggest that some of the proteases may be synthesised de novo, whereas alpha-galactosidase seems to be present in the endosperm cells probably as an inactive polypeptide in the protein bodies, being probably activated by proteolysis when the latter organelle is disassembled. These evidences suggest the existence of a connection between storage proteins and carbohydrates mobilisation in seeds of S. virgata, which would play a role by assuring a balanced afflux of the carbon and nitrogen to the seedling development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existe a necessidade da sustentação da produção vegetal no período de inverno no Rio Grande do Sul para a produção animal, e há duas espécies potenciais para isto, o trevo vermelho e a alfafa. No entanto, vários são os fatores que são necessários para a implantação destas culturas cujo custo, por ser elevado, deve ser justificado. O melhoramento genético vegetal é uma das áreas que pode contribuir na maior produção destas espécies principalmente de matéria seca e de produção de sementes. Especificamente, os índices de seleção que associam diversas características de interesse na seleção são ferramentas importantes. Desta forma, o objetivo deste trabalho é verificar a eficiência da utilização de diferentes metodologias de índices de seleção na escolha das melhores plantas cultivadas à campo. Os dados sobre características agronômicas de duas populações de trezentas plantas, uma de trevo vermelho (Trifolium pratense L.) e outra de alfafa (Medicago sativa L.) avaliadas a campo de forma individualizada, dispostas em seis blocos, com cinqüenta plantas em cada bloco, foram investigadas. Utilizou-se a análise de correlações residuais entre as variáveis analisadas, para se determinar quais seriam as características que seriam incluídas nos índices, eliminando-se uma de cada duas altamente correlacionadas. Foram construídos seis índices de seleção: o multiplicativo de Elston, o base de Baker, os base de Williams via componentes principais e via função discriminante canônica, um índice construído através da correlação canônica e o de soma de postos de Mulamba e Mock. Estudos de concordância, entre os diferentes índices, foram realizados através da correlação de Sperman. A concordância quanto às plantas selecionadas, pelos diferentes índices de seleção, foi procedida sob uma seleção de 20% das plantas. As metodologias de seleção de plantas individuais foram eficientes, na escolha de plantas promissoras, levando em consideração simultaneamente às várias características. Os índices de seleção apresentaram alta concordância em relação às plantas selecionadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O fósforo (P) é um importante nutriente para o surgimento de brotos em alfafa. Através do estudo da dinâmica do aparecimento de brotos pode-se obter informações que auxiliam na adoção de um manejo eficiente. Diversas fontes de P estão disponíveis no mercado, sendo que a eficiência deste nutriente é afetada pela acidez do solo. O uso do gesso com fosfato de rocha pode corrigir o perfil do solo em relação ao alumínio e diminuir a fixação de P. Num experimento conduzido em vasos, superfosfato triplo (ST), fosfato de Gafsa (FG) e FG com gesso, aplicados antes e depois da calagem, foram avaliados para se estudar o número de brotos laterais e basais em alfafa, assim como a dinâmica do surgimento destes brotos em função das seguintes doses: 0, 50, 100 e 200 mg P dm-3. A avaliação envolveu três cortes da cultura. A dose de 100 mg P dm-3 retardou em 6 a 15 dias o surgimento do segundo broto basal quando comparada à dose de 200 mg P dm-3. Os brotos laterais surgiram 24 dias após o aparecimento dos brotos basais quando empregou-se a dose de 200 mg P dm-3. A adição de fósforo aumentou o número de brotos basais e laterais de 1,5 e 0,5 broto/planta para 8,0 e 6,9 brotos/planta, respectivamente. Verificou-se um maior número de hastes basais com a utilização do FG (5,1 brotos/planta) do que com o uso de ST (2,9 brotos/planta). Não houve efeito do gesso sobre os brotos laterais. O uso do FG mais gesso resultou em 5,9 brotos basais/planta, enquanto que o uso do FG não combinado com gesso resultou em 3,9 brotos basais/planta. Não houve efeito do momento de calagem sobre o número de brotos da alfafa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objetivou-se nesse estudo avaliar o papel atenuador da espermidina exógena sobre a germinação, vigor de sementes e crescimento de p¢ntulas de cultivares das forrageiras alfafa, guandu e labe-labe submetidas ao estresse salino. A semeadura foi realizada em caixas de p¡stico tipo gerbox forradas com papel de filtro umedecidos com soluções salinas nas concentrações de 0, 20, 40, 60, 80 e 120 mM de NaCl contendo 0 ou 0,5 mM de espermidina. O delineamento experimental foi inteiramente casualizado em esquema fatorial 3 x 6 x 2 (forrageiras x salinidade x espermidina) com cinco repetições de 25 sementes. As avaliações da germinação foram realizadas no quarto e décimo dias, juntamente com o índice de velocidade de germinação (IVG), avaliado até o nono dia após a semeadura. Determinou-se a concentração salina que reduz em 50% a germinação e a massa seca da parte aérea e raiz no décimo dia após a semeadura. A aplicação de espermidina exógena proporcionou maior acúmulo de massa seca das raízes de labe-labe cv. Rongai, a©m de ter possibilitado a germinação de 50% das sementes de guandu cv. Caqui até a concentração salina de 72,09 mM de NaCl, assim como maior IVG nas sementes das leguminosas alfafa cv. Crioula e labe-labe cv. Rongai.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experiment was conducted to study alfalfa (Medicago sativa L.) yields as affected by row spacings of 15, 20, 30 and 40 cm and plant densities originated from 10, 15, 20 and 30 kg/ha of seeds. The experiment was conducted on a Typic Eutrortox (Clay) in Bandeirantes, state of Paraná, Brazil. The experimetal design was a 4 × 4 factorial in randomized triplicated blocks. There was no significant effect of row spacings and plant populations on plant height and dry matter production. The 15 cm row spacing showed higher number of stems throughout the two years of the experiment. Up to the 6th cut the plant density of 30 kg/ha also lead to a higher number of stems/ha.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the effect of applying fibrolytic enzymes at ensiling, either alone or in combination with a ferulic acid esterase-producing bacterial silage inoculant, on the silage conservation characteristics and nutritive value of alfalfa (Medicago sativa L). Second-cut alfalfa (340 g DM/kg fresh crop) was harvested, wilted, chopped and sub-sampled into 24 batches. Samples were randomly allocated in triplicate to one of four enzyme product treatments supplying endoglucanases and xylanases: none (control), EN1, EN2, EN3; applied alone or in combination with a ferulic acid esterase-producing silage inoculant (FAEI). Treatments were arranged in a 4 x 2 factorial design. All enzyme treatments were applied at 2 ml enzyme product/kg herbage DM, and inoculant was applied at 1 x 10(5) cfu/g fresh herbage. Samples were packed into laboratory-scale silos and stored for 7, 27 or 70 days, and analysed for dry matter (DM) losses, aerobic stability, chemical composition and in vitro ruminal degradability. The use of enzymes did not affect (P>0.05) ensilage DM losses or lactic or acetic acid concentrations after 70 days of ensilage, compared to the control silage. Silage produced using EN1 had lesser neutral detergent fibre (aNDF, P=0.046) and acid detergent fibre (ADF; P=0.006) concentrations than control silage. However, no difference (P>0.05) was observed between the control silage and silage produced with EN1 for aNDF or ADF degradability (NDFD, ADFD). Silages produced with FAEI had greater DM losses (P=0.017) and pH (P<0.001) and lesser NDFD (P=0.019), ADFD (P=0.010) and proportion of lactic acid in the total fermentation products (P=0.006) after 70 days of ensilage, compared to uninoculated silages. The use of fibrolytic enzymes did not have a major effect on the ensilage fermentation of alfalfa, either ensiled alone or with an inoculant. No advantage in ruminal DM or fibre degradability was observed for silages produced with fibrolytic enzymes. The use of a ferulic acid esterase-producing inoculant alone did not improve the nutritive value of alfalfa silage, and did not promote any incremental effects when applied in combination with fibrolytic enzyme products. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sinorhizobium meliloti bacteria produce a signal molecule that enhances root respiration in alfalfa (Medicago sativa L.) and also triggers a compensatory increase in whole-plant net carbon assimilation. Nuclear magnetic resonance, mass spectrometry, and ultraviolet–visible absorption identify the enhancer as lumichrome, a common breakdown product of riboflavin. Treating alfalfa roots with 3 nM lumichrome increased root respiration 21% (P < 0.05) within 48 h. A closely linked increase in net carbon assimilation by the shoot compensated for the enhanced root respiration. For example, applying 5 nM lumichrome to young alfalfa roots increased plant growth by 8% (P < 0.05) after 12 days. Soaking alfalfa seeds in 5 nM lumichrome before germination increased growth by 18% (P < 0.01) over the same period. In both cases, significant growth enhancement (P < 0.05) was evident only in the shoot. S. meliloti requires exogenous CO2 for growth and may benefit directly from the enhanced root respiration that is triggered by lumichrome. Thus Sinorhizobium–alfalfa associations, which ultimately form symbiotic N2-reducing root nodules, may be favored at an early developmental stage by lumichrome, a previously unrecognized mutualistic signal. The rapid degradation of riboflavin to lumichrome under many physiological conditions and the prevalence of riboflavin release by rhizosphere bacteria suggest that events demonstrated here in the S. meliloti–alfalfa association may be widely important across many plant–microbe interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) is a key enzyme in primary nitrogen assimilation in alfalfa (Medicago sativa L.) root nodules. Here we report that in alfalfa, a single gene, probably with multiple alleles, encodes for NADH-GOGAT. In situ hybridizations were performed to assess the location of NADH-GOGAT transcript in alfalfa root nodules. In wild-type cv Saranac nodules the NADH-GOGAT gene is predominantly expressed in infected cells. Nodules devoid of bacteroids (empty) induced by Sinorhizobium meliloti 7154 had no NADH-GOGAT transcript detectable by in situ hybridization, suggesting that the presence of the bacteroid may be important for NADH-GOGAT expression. The pattern of expression of NADH-GOGAT shifted during root nodule development. Until d 9 after planting, all infected cells appeared to express NADH-GOGAT. By d 19, a gradient of expression from high in the early symbiotic zone to low in the late symbiotic zone was observed. In 33-d-old nodules expression was seen in only a few cell layers in the early symbiotic zone. This pattern of expression was also observed for the nifH transcript but not for leghemoglobin. The promoter of NADH-GOGAT was evaluated in transgenic alfalfa plants carrying chimeric β-glucuronidase promoter fusions. The results suggest that there are at least four regulatory elements. The region responsible for expression in the infected cell zone contains an 88-bp direct repeat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In root nodules of alfalfa (Medicago sativa L.), N2 is reduced to NH4+ in the bacteroid by the nitrogenase enzyme and then released into the plant cytosol. The NH4+ is then assimilated by the combined action of glutamine synthetase (EC 6.3.1.2) and NADH-dependent Glu synthase (NADH-GOGAT; EC 1.4.1.14) into glutamine and Glu. The alfalfa nodule NADH-GOGAT protein has a 101-amino acid presequence, but the subcellular location of the protein is unknown. Using immunocytochemical localization, we determined first that the NADH-GOGAT protein is found throughout the infected cell region of both 19- and 33-d-old nodules. Second, in alfalfa root nodules NADH-GOGAT is localized predominantly to the amyloplast of infected cells. This finding, together with earlier localization and fractionation studies, indicates that in alfalfa the infected cells are the main location for the initial assimilation of fixed N2.