943 resultados para Mediator Release
Resumo:
The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be interconnected with seeded osteoblasts on the bone surface. Using a low-level medium perfusion system, the viability of in situ osteocytes in bone explants was maintained for up to 4 weeks, and functional gap junction intercellular communication (GJIC) was successfully established between osteocytes and seeded primary osteoblasts. Using this novel co-culture model, the effects of dynamic deformational loading, GJIC, and prostaglandin E-2 (PGE(2)) release on functional bone adaptation were further investigated. The results showed that dynamical deformational loading can significantly increase the PGE(2) release by bone cells, bone formation, and the apparent elastic modulus of bone explants. However, the inhibition of gap junctions or the PGE(2) pathway dramatically attenuated the effects of mechanical loading. This 3D trabecular bone explant co-culture model has great potential to fill in the critical gap in knowledge regarding the role of osteocytes as a mechano-sensor and how osteocytes transmit signals to regulate osteoblasts function and skeletal integrity as reflected in its mechanical properties.
Resumo:
An internally circulating fluidized bed (ICFB) was applied to investigate the behavior of chlorine and sulfur during cofiring RDF and coal. The pollutant emissions in the flue gas were measured by Fourier transform infrared (FTIR) spectrometry (Gasmet DX-3000). In the tests, the concentrations of the species CO, CO2, HCl, and SO2 were measured online. Results indicated when cofiring RDF and char, due to the higher content of chlorine in RDF, the formation of HCl significantly increases. The concentration Of SO2 is relatively low because alkaline metal in the fuel ash can absorb SO2. The concentration of CO emission during firing pure RDF is relatively higher and fluctuates sharply. With the CaO addition, the sulfur absorption by calcium quickly increases, and the desulfuration ratio is bigger than the dechlorination ratio. The chemical equilibrium method is applied to predict the behavior of chlorine. Results show that gaseous HCl emission increases with increasing RDF fraction, and gaseous KCl and NaCl formation might occur.
Resumo:
Gold Coast Water is responsible for the management of the water and wastewater assets of the City of the Gold Coast on Australia’s east coast. Treated wastewater is released at the Gold Coast Seaway on an outgoing tide in order for the plume to be dispersed before the tide changes and renters the Broadwater estuary. Rapid population growth over the past decade has placed increasing demands on the receiving waters for the release of the City’s effluent. The Seaway SmartRelease Project is designed to optimise the release of the effluent from the City’s main wastewater treatment plant in order to minimise the impact of the estuarine water quality and maximise the cost efficiency of pumping. In order to do this an optimisation study that involves water quality monitoring, numerical modelling and a web based decision support system was conducted. An intensive monitoring campaign provided information on water levels, currents, winds, waves, nutrients and bacterial levels within the Broadwater. These data were then used to calibrate and verify numerical models using the MIKE by DHI suite of software. The decision support system then collects continually measured data such as water levels, interacts with the WWTP SCADA system, runs the models in forecast mode and provides the optimal time window to release the required amount of effluent from the WWTP. The City’s increasing population means that the length of time available for releasing the water with minimal impact may be exceeded within 5 years. Optimising the release of the treated water through monitoring, modelling and a decision support system has been an effective way of demonstrating the limited environmental impact of the expected short term increase in effluent disposal procedures. (PDF contains 5 pages)
Resumo:
In four chapters various aspects of earthquake source are studied.
Chapter I
Surface displacements that followed the Parkfield, 1966, earthquakes were measured for two years with six small-scale geodetic networks straddling the fault trace. The logarithmic rate and the periodic nature of the creep displacement recorded on a strain meter made it possible to predict creep episodes on the San Andreas fault. Some individual earthquakes were related directly to surface displacement, while in general, slow creep and aftershock activity were found to occur independently. The Parkfield earthquake is interpreted as a buried dislocation.
Chapter II
The source parameters of earthquakes between magnitude 1 and 6 were studied using field observations, fault plane solutions, and surface wave and S-wave spectral analysis. The seismic moment, MO, was found to be related to local magnitude, ML, by log MO = 1.7 ML + 15.1. The source length vs magnitude relation for the San Andreas system found to be: ML = 1.9 log L - 6.7. The surface wave envelope parameter AR gives the moment according to log MO = log AR300 + 30.1, and the stress drop, τ, was found to be related to the magnitude by τ = 0.54 M - 2.58. The relation between surface wave magnitude MS and ML is proposed to be MS = 1.7 ML - 4.1. It is proposed to estimate the relative stress level (and possibly the strength) of a source-region by the amplitude ratio of high-frequency to low-frequency waves. An apparent stress map for Southern California is presented.
Chapter III
Seismic triggering and seismic shaking are proposed as two closely related mechanisms of strain release which explain observations of the character of the P wave generated by the Alaskan earthquake of 1964, and distant fault slippage observed after the Borrego Mountain, California earthquake of 1968. The Alaska, 1964, earthquake is shown to be adequately described as a series of individual rupture events. The first of these events had a body wave magnitude of 6.6 and is considered to have initiated or triggered the whole sequence. The propagation velocity of the disturbance is estimated to be 3.5 km/sec. On the basis of circumstantial evidence it is proposed that the Borrego Mountain, 1968, earthquake caused release of tectonic strain along three active faults at distances of 45 to 75 km from the epicenter. It is suggested that this mechanism of strain release is best described as "seismic shaking."
Chapter IV
The changes of apparent stress with depth are studied in the South American deep seismic zone. For shallow earthquakes the apparent stress is 20 bars on the average, the same as for earthquakes in the Aleutians and on Oceanic Ridges. At depths between 50 and 150 km the apparent stresses are relatively high, approximately 380 bars, and around 600 km depth they are again near 20 bars. The seismic efficiency is estimated to be 0.1. This suggests that the true stress is obtained by multiplying the apparent stress by ten. The variation of apparent stress with depth is explained in terms of the hypothesis of ocean floor consumption.
Resumo:
Genetic engineering now makes possible the insertion of DNA from many organisms into other prokaryotic, eukaryotic and viral hosts. This technology has been used to construct a variety of such genetically engineered microorganisms (GEMs). The possibility of accidental or deliberate release of GEMs into the natural environment has recently raised much public concern. The prospect of deliberate release of these microorganisms has prompted an increased need to understand the processes of survival, expression, transfer and rearrangement of recombinant DNA molecules in microbial communities. The methodology which is being developed to investigate these processes will greatly enhance our ability to study microbial population ecology.
Resumo:
A diffraction mechanism is proposed for the capture, multiple bouncing and final escape of a fast ion (keV) impinging on the surface of a polarizable material at grazing incidence. Capture and escape are effected by elastic quantum diffraction consisting of the exchange of a parallel surface wave vector G= 2p/ a between the ion parallel momentum and the surface periodic potential of period a. Diffraction- assisted capture becomes possible for glancing angles F smaller than a critical value given by Fc 2- 2./ a-| Vim|/ E, where E is the kinetic energy of the ion,. = h/ Mv its de Broglie wavelength and Vim its average electronic image potential at the distance from the surface where diffraction takes place. For F< Fc, the ion can fall into a selected capture state in the quasi- continuous spectrum of its image potential and execute one or several ricochets before being released by the time reversed diffraction process. The capture, ricochet and escape are accompanied by a large, periodic energy loss of several tens of eV in the forward motion caused by the coherent emission of a giant number of quanta h. of Fuchs- Kliewer surface phonons characteristic of the polar material. An analytical calculation of the energy loss spectrum, based on the proposed diffraction process and using a model ion-phonon coupling developed earlier (Lucas et al 2013 J. Phys.: Condens. Matter 25 355009), is presented, which fully explains the experimental spectrum of Villette et al (2000 Phys. Rev. Lett. 85 3137) for Ne+ ions ricocheting on a LiF(001) surface.
Resumo:
FishBase is a computerized encyclopedia of fishes developed at International Center for Living Aquatic Resources Management (ICLARM) with the support of the European Commission and in collaboration with a large number of institutions throughout the world, notably FAO, and available since 1995 as CD-ROM. Major improvements since version 1.2 have now allowed for the release of FishBase 96, whose name indicates the intention to update FishBase annually. Some of the major improvements of FishBase 96 are: (a) 3,000 more species (total 15,000) and 3,000 more pictures (total 9,000); (b) complete marine checklists for 48 countries, and freshwater checklists for 60 countries; (c) a new user module to document local knowledge of fishes; (d) a stand-alone glossary defining 2,500 ichthyological and related terms; (e) new databases on brain weights (from R. Beauchot and colleagues at the University of Paris VII), on ciguatera (from P. Dalzell, South Pacific Commission, Noumea), and on recruitment (from R.A. Myers and colleagues at the Department of Fisheries and Oceans, St. John's); and (f) new graphs to display quantitative data: through time series, pie charts and bivariate plots. As before, FishBase is available free to collaborators, for US$50 as update to registered users of previous versions, and for US$95 for new users.
Resumo:
A brief description of the origin, "philosophy", and key features of FiSAT (FAO-ICLARM Stock Assessment Tools), the joint FAO-ICLARM software is given, along with information on its distribution and maintenance.
Resumo:
The blue shark (Prionace glauca) is an oceanic species that occurs in temperate and tropical waters around the globe (Robins and Ray, 1986). This species is a major bycatch of pelagic longline fleets that operate to supply the world’s growing demand for tunas and swordfish (Xiphias gladius) (Stevens, 1992; Bailey et al., 1996; Francis, 1998; Francis et al., 2001; Macias and de la Serna, 2002); numerically, the blue shark is the top nontarget species captured by the U.S. longline pelagic Atlantic fleet (Beerkircher et al.