716 resultados para Mechanical drawing
Resumo:
Thermally expandable particles (TEPs) are used in a wide variety of applications by industry mainly for weight reduction and appearance improvement for thermoplastics, inks, and coatings. In adhesive bonding, TEPs have been used for recycling purposes. However, TEPs might be used to modify structural adhesives for other new purposes, such as: to increase the joint strength by creating an adhesive functionally modified along the overlap of the joint by gradual heating and/or to heal the adhesive in case of damage. In this study, the behaviour of a structural polyurethane adhesive modified with TEPs was investigated as a preliminary study for further investigations on the potential of TEPs in adhesive joints. Tensile bulk tests were performed to get the tensile properties of the unmodified and TEPs-modified adhesive, while Double Cantilever Beam (DCB) test was performed in order to evaluate the resistance to mode I crack propagation of unmodified and TEPs-modified adhesive. In addition, in order to investigate the behaviour of the particles while encapsulated in adhesives, a thermal analysis was done. Scanning electron microscopy (SEM) was used to examine the fracture surface morphology of the specimens. The fracture toughness of the TEPs-modified adhesive was found to increase by addition of TEPs, while the adhesive tensile strength at yield decreased. The temperature where the particles show the maximum expansion varied with TEPs concentration, decreasing with increasing the TEPs content.
Resumo:
The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.
Resumo:
Reading is a basic competence that students have to master to be successful. Despite this fact, recent studies show that there may be a significant decline in the reading abilities of college students, one of the most educated segments of any population. This work is a prospecting study regarding the assessment of reading abilities of college students, namely in the context of Engineering education. Based on an existing screening test for assessing reading difficulties of children and teenagers, this work presents the results obtained by administrating that test to students at a top engineering institution in Portugal. An outcome of this study is the determination of a time range suitable for a massive, time limited, use of the previously mentioned test to assess college students, thus enabling a basic tool that will permit, in future works, to screen reading abilities in wider college populations. This work also shows evidence that ca. 20% of college students present a poor reading performance, revealing a strong need for monitoring college students’ reading abilities along different generations.
Resumo:
A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in Sanitary Engineering in the Faculty of Sciences and Technology of the New University of Lisbon
Resumo:
As excelentes propriedades mecânicas, associadas ao seu baixo peso, fazem com que os materiais compósitos sejam atualmente dos mais interessantes da nossa sociedade tecnológica. A crescente utilização destes materiais e a excelência dos resultados daí provenientes faz com que estes materiais sejam utilizados em estruturas complexas de responsabilidade, pelo que a sua maquinagem se torna necessária de forma a possibilitar a ligação entre peças. O processo de furação é o mais frequente. O processo de maquinagem de compósitos terá como base os métodos convencionais utilizados nos materiais metálicos. O processo deverá, no entanto, ser convenientemente adaptado, quer a nível de parâmetros, quer a nível de ferramentas a utilizar. As características dos materiais compósitos são bastante particulares pelo que, quando são sujeitos a maquinagem poderão apresentar defeitos tais como delaminação, fissuras intralaminares, arrancamento de fibras ou dano por sobreaquecimento. Para a detecção destes danos, por vezes a inspeção visual não é suficiente, sendo necessário recorrer a processos específicos de análise de danos. Existem já, alguns estudos, cujo âmbito foi a obtenção de furos de qualidade em compósitos, com minimização do dano, não se podendo comparar ainda com a informação existente, no que se refere à maquinagem de materiais metálicos ou ligas metálicas. Desta forma, existe ainda um longo caminho a percorrer, de forma a que o grau de confiança na utilização destes materiais se aproxime aos materiais metálicos. Este trabalho experimental desenvolvido nesta tese assentou essencialmente na furação de placas laminadas e posterior análise dos danos provocados por esta operação. Foi dada especial atenção à medição da delaminação causada pela furação e à resistência mecânica do material após ser maquinado. Os materiais utilizados, para desenvolver este trabalho experimental, foram placas compósitas de carbono/epóxido com duas orientações de fibras diferentes: unidireccionais e em “cross-ply”. Não se conseguiu muita informação, junto do fornecedor, das suas características pelo que se levaram a cabo ensaios que permitiram determinar o seu módulo de elasticidade. Relativamente á sua resistência â tração, como já foi referido, a grande resistência oferecida pelo material, associada às limitações da máquina de ensaios não permitiu chegar a valores conclusivos. Foram usadas três geometrias de ferramenta diferentes: helicoidal, Brad e Step. Os materiais utilizados nas ferramentas, foram o aço rápido (HSS) e o carboneto de tungsténio para as brocas helicoidais de 118º de ângulo de ponta e apenas o carboneto de tungsténio para as brocas Brad e Step. As ferramentas em diamante não foram consideradas neste trabalho, pois, embora sejam reconhecidas as suas boas características para a maquinagem de compósitos, o seu elevado custo não justifica a sua escolha, pelo menos num trabalho académico, como é o caso. As vantagens e desvantagens de cada geometria ou material utilizado foram avaliadas, tanto no que diz respeito à delaminação como á resistência mecânica dos provetes ensaiados. Para a determinação dos valores de delaminação, foi usada a técnica de Raio X. Algum conhecimento já existente relativamente a este processo permitiu definir alguns parâmetros (por exemplo: tempo de exposição das placas ao liquido contrastante), que tornaram acessível o procedimento de obtenção de imagens das placas furadas. Importando estas imagens para um software de desenho (no caso – AutoCad), foi possível medir as áreas delaminadas e chegar a valores para o fator de delaminação de cada furo efetuado. Terminado este processo, todas as placas foram sujeitas a ensaios de esmagamento, de forma a avaliar a forma como os parâmetros de maquinagem afectaram a resistência mecânica do material. De forma resumida, são objetivos deste trabalho: - Caracterizar as condições de corte em materiais compósitos, mais especificamente em fibras de carbono reforçado com matriz epóxida (PRFC); - Caracterização dos danos típicos provocados pela furação destes materiais; - Desenvolvimento de análise não destrutiva (RX) para avaliação dos danos provocados pela furação; - Conhecer modelos existentes com base na mecânica da fratura linear elástica (LEFM); - Definição de conjunto de parâmetros ideais de maquinagem com o fim de minimizar os danos resultantes da mesma, tendo em conta os resultados provenientes dos ensaios de força, da análise não destrutiva e da comparação com modelos de danos existentes e conhecidos.
Resumo:
This paper reports the design of a new remotely operated underwater vehicle (ROV), which has been developed at the Underwater Systems and Technology Laboratory (USTL) - University of Porto. This design is contextualized on the KOS project (Kits for underwater operations). The main issues addressed here concern directional drag minimization, symmetry, optimized thruster positioning, stability and layout of ROV components. This design is aimed at optimizing ROV performance for a set of different operational scenarios. This is achieved through modular configurations which are optimized for each different scenario.
Resumo:
The objectives of this study were to determine the incidence of infection by respiratory viruses in preterm infants submitted to mechanical ventilation, and to evaluate the clinical, laboratory and radiological patterns of viral infections among hospitalized infants in the neonatal intensive care unit (NICU) with any kind of acute respiratory failure. Seventy-eight preterm infants were studied from November 2000 to September 2002. The newborns were classified into two groups: with viral infection (Group I) and without viral infection (Group II). Respiratory viruses were diagnosed in 23 preterm infants (29.5%); the most frequent was respiratory syncytial virus (RSV) (14.1%), followed by influenza A virus (10.2%). Rhinorrhea, wheezing, vomiting and diarrhea, pneumonia, atelectasis, and interstitial infiltrate were significantly more frequent in newborns with nosocomial viral infection. There was a correlation between nosocomial viral infection and low values of C-reactive protein. Two patients with mixed infection from Group I died during the hospital stay. In conclusion, RSV was the most frequent virus in these patients. It was observed that, although the majority of viral lower respiratory tract infections had a favorable course, some patients presented a serious and prolonged clinical manifestation, especially when there was concomitant bacterial or fungal infection.
Resumo:
To compare two yeast identification methods, i. e, the manual and the VITEK mechanical methods, 62 clinical samples from hemocultures and animal sources were analyzed. After identification as Candida yeasts by the VITEK method, the strains were recharacterized using manual assimilation methods and sugar fermentation tests. Our findings reveal 58% concurrent identification between the two methods for animal strains, and 51% for human hemoculture strains.
Resumo:
This study focus on the probabilistic modelling of mechanical properties of prestressing strands based on data collected from tensile tests carried out in Laboratório Nacional de Engenharia Civil (LNEC), Portugal, for certification purposes, and covers a period of about 9 years of production. The strands studied were produced by six manufacturers from four countries, namely Portugal, Spain, Italy and Thailand. Variability of the most important mechanicalproperties is examined and the results are compared with the recommendations of the ProbabilisticModel Code, as well as the Eurocodes and earlier studies. The obtained results show a very low variability which, of course, benefits structural safety. Based on those results, probabilistic modelsfor the most important mechanical properties of prestressing strands are proposed.
Resumo:
Plasmodium falciparum resistant strain development has encouraged the search for new antimalarial drugs. Febrifugine is a natural substance with high activity against P. falciparum presenting strong emetic property and liver toxicity, which prevent it from being used as a clinical drug. The search for analogues that could have a better clinical performance is a current topic. We aim to investigate the theoretical electronic structure by means of febrifugine derivative family semi-empirical molecular orbital calculations, seeking the electronic indexes that could help the design of new efficient derivatives. The theoretical results show there is a clustering in well-defined ranges of several electronic indexes of the most selective molecules. The model proposed for achieving high selectivity was tested with success.
Resumo:
One parameter that influences the adhesively bonded joints performance is the adhesive layer thickness. Hence, its effect has to be investigated experimentally and should be taken into consideration in the design of adhesive joints. Most of the results from literature are for typical structural epoxy adhesives which are generally formulated to perform in thin sections. However, polyurethane adhesives are designed to perform in thicker sections and might have a different behavior as a function of adhesive thickness. In this study, the effect of adhesive thickness on the mechanical behavior of a structural polyurethane adhesive was investigated. The mode I fracture toughness of the adhesive was measured using double-cantilever beam (DCB) tests with various thicknesses of the adhesive layer ranging from 0.2 to 2 mm. In addition, single lap joints (SLJs) were fabricated and tested to assess the influence of adhesive thickness on the lap-shear strength of the adhesive. An increasing fracture toughness with increasing adhesive thickness was found. The lap-shear strength decreases as the adhesive layer gets thicker, but in contrast to joints with brittle adhesives the decrease trend was less pronounced.
Resumo:
To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated. Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5- dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane and wax. The following mechanical properties were assessed experimentally: Modulus of elasticity measured statically, stiffness stabilization efficiency in different climates (30 and 87% of relative humidity), modulus of rupture, work maximum load, impact bending strength, compression, tensile and shear strength at indoor conditions (65% of relative humidity). In both types of active principle of modification, cell wall or lumen fill, no significant changes on the bending stiffness (modulus of elasticity) were found. In the remaining properties analysed significant changes in the modified wood-material took place compared to unmodified wood control: - Cell wall modification was the most effective method to achieve high stiffness stabilization efficiency (up to 60%) and also increased compression strength (up to 230%). However, modulus of rupture, tensile, shear and the impact bending strength were reduced by both resins, but in a varying extent, where the N-methylol melamine formaldehyde endured less reduction than 1,3-dimethylol-4,5-dihydroxyethyleneurea resin. In the latter, reduction up to 60% can take place. - In the lumen fill modification: tetra-alkoxysilane has no effect in the mechanical properties. Although, a slight increase in shear strength parallel to the grain was found. Wax specimens have shown a slight increase in bending strength, compression, tensile and shear strength as well as in the absorption energy capacity.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia de Materiais
Resumo:
This case report discusses an unusual presentation of ST-segment elevation myocardial infarction (STEMI) with normal coronary arteries and severe mechanical complications successfully treated with surgery. An 82-year-old man presented STEMI with angiographically normal coronary arteries and no major echocardiographic alterations at discharge. At the first month follow-up, he complained of fatigue and dyspnea, and contrast echocardiography complemented by cardiac magnetic resonance imaging revealed a large left ventricular apical aneurysm with a thrombus communicating by two jets of a turbulent flow to an aneurysmatic formation of the right ventricular apex. The patient underwent a Dor procedure, which was successful. Ventricular septal defects and ventricular aneurysms are rare but devastating complications of STEMI, with almost all patients presenting multivessel coronary artery disease. Interestingly in this case, the angiographic pattern was normal.
Resumo:
OBJECTIVE: Hereditary hemochromatosis (HH) is a disease caused by mutations in the Hfe gene characterised by systemic iron overload and associated with an increased prevalence of osteoarthritis (OA) but the role of iron overload in the development of OA is still undefined. To further understand the molecular mechanisms involved we have used a murine model of HH and studied the progression of experimental OA under mechanical stress. DESIGN: OA was surgically induced in the knee joints of 10-week-old C57BL6 (wild-type) mice and Hfe-KO mice. OA progression was assessed using histology, micro CT, gene expression and immunohistochemistry at 8 weeks after surgery. RESULTS: Hfe-KO mice showed a systemic iron overload and an increased iron accumulation in the knee synovial membrane following surgery. The histological OA score was significantly higher in the Hfe-KO mice at 8 weeks after surgery. Micro CT study of the proximal tibia revealed increased subchondral bone volume and increased trabecular thickness. Gene expression and immunohistochemical analysis showed a significant increase in the expression of matrix metallopeptidase 3 (MMP-3) in the joints of Hfe-KO mice compared with control mice at 8 weeks after surgery. CONCLUSIONS: HH was associated with an accelerated development of OA in mice. Our findings suggest that synovial iron overload has a definite role in the progression of HH-related OA