928 resultados para Mechanical Resistance


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The red pottery industry in Piauí state is well developed and stands out at the national context for the technical quality of its products. The floor and wall tile industry, however, is little developed since the state has only one company that produces red clay-based ceramic tiles. This thesis aims at using the predominantly illitic basic mass of the above mentioned industry, with the addition of feldspar and/or kaolin residue in order to obtain products of higher technical quality. Kaolin residue consists basically of kaolinite, muscovite mica and quartz; the feldspar used was potassic. In this experiment, basic mass (MB) was used for experimental control and fifteen formulations codified as follows: F2, F4, F8, F16, F32, FR2, FR4, FR8, FR16, FR32, R2, R4, R8, R16 and R32. All raw materials were dry-milled, classified, formulated and then humidified to 10% water. Thereafter, test samples were produced by unixial pressing process in a rectangular steel matrix (60.0 x 20.0 x 5.0) mm3 at (25 MPa). They were fired at four temperatures: 1080°C, 1120°C, 1160°C, with a heating rate of 10°C/min during up to 10 min in an electric oven, and the last one in an industrial oven with a peak of 1140°C, aim ing to confirm the results found in laboratory and, finally, technological tests were performed: MEA, RL, AA, PA, TRF and PF. The results revealed that the residue under study can be considered a raw material with large potential in the industry of red clay-based ceramic tiles, since the results found both in laboratory and in the industry have shown that the test samples produced from the formulations with up to 4% feldspar and those produced with up to 8% feldspar and residue permitted a reduction in the water absorption rate and an increase in the mechanical resistance while those samples produced with up to 4% residue had an increase in the mechanical resistance when compared to those produced from the basic mass and that the formulation with 2% feldspar and residue presented the best technological properties, lowering the sintering temperature down to 1120°C

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of waste from urban and industrial activities is one of the factors of environmental contamination and has aroused attention of the scientific community, in the sense of its reuse. On the other hand, the city of Salvador/Ba, with approximately 262 channels, responsible for storm water runoff, produces every year, by the intervention of cleaning and clearing channels, a significant volume of sediments (dredged mud), and thus an appropriate methodology for their final destination. This study aims to assess the influence of incorporation of these tailings in arrays of clay for production of interlocked block ceramic, also known as ceramic paver. All the raw materials from the metropolitan region of Salvador (RMS) were characterized by x-ray fluorescence, x-ray diffraction, thermal analysis (TG and TDA), particle size analysis and dilatometry. With the use of statistical experimental planning technique, ternary diagram was defined in the study region and the analyzed formulations. The specimens were prepared with dimensions of 60x20x5mm³, by uniaxial pressing of 30 MPa and after sintering at temperatures of 900°, 1000º and 1100ºC the technological properties were evaluated: linear shrinkage, water absorption, apparent porosity, apparent specifies mass, flexural rupture and module. For the uniaxial compression strength used cylindrical probe body with Ø 50 mm. The standard mass (MP) was prepared with 90% by weight of clay and 10% by weight of Channel sediment (SCP), not being verified significant variations in the properties of the final product. With the incorporation of 10% by weight of manganese residue (PFM) and 10% by weight of the Ceramic waste (RCB) in the mass default, in addition to adjusting the plasticity due to less waste clay content, provided increased linear firing shrinkage, due the significant concentration of K2O, forming liquid phase at low temperature, contributing to decreased porosity and mechanical resistance, being 92,5 MPa maximum compressive strength verified. After extract test leachate and soluble, the piece containing 10% of the PFM, was classified as non-hazardous and inert material according to NBR10004/04 ABNT. The results showed the feasibility on using waste, SCP, RCB and PFM clay mass, at temperatures above 900ºC, paver ceramic production, according to the specifications of the technical standards, so that to exceed the 10% of the PFM, it becomes imperative to conduct studies of environmental impacts

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polyester film has a vast application field, due some properties that are inherent of this kind of material such as, good mechanical resistance, chemical resistance to acids and bases and low production cost. However, this material has some limitations as low superficial tension, flat surface, low affinity to dyers, and poor adhesion which impede the use of the same ones for some finality as good wettability. Among the existent techniques to increase the superficial tension, plasma as energy source is the more promising technique, because of their versatility and for not polluting the environment. The plasma surface polymeric modification has been used for many researchers, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, polyester films were treated with oxygen plasma varying the treatment time from 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) varying the percentage of each gas the mixture from 0 to 100%, the treatment time remaining constant to all treatments (10 min). After plasma treatment the samples were characterized by contact angle, surface tension, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, with the aim to study the wettability increase of treated polyester films as its variables. In the (O2/N2) plasma treatment of polyester films can be observed an increase of superficial roughness superior to those treated by O2 plasma. By the other hand, the chemical modification through the implantation of polar groups at the surface is obtained more easily using O2 plasma treatment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metal-Ceramic (M/C) Zirconia-stainless steel interfaces have been processed through brazing techniques due to the excellent combination of properties such as high temperature stability, high corrosion resistance and good mechanical properties. However, some M/C interfaces show some defects, like porosity and cracks results in the degradation of the interfaces, leading even to its total rupture. Most of time, those defects are associated with an improper brazing parameters selection to the M/C system. In this work, ZrO2 Y-TZP and ZrO2 Mg - PSZ were joint with the stainless steel grade 304 by brazing using a eutectic silver-copper (Ag28Cu) interlayer alloy with different thermal cycles. Ceramic surfaces were previous mechanically metallized with titanium to improve adhesion of the system. The effect of temperature on the M/C interface was studied. SEM-EDS and 3 point flexural bend test were performed to evaluate morphology, chemical composition and mechanical resistance of the M/C interfaces. Lower thermal cycle temperatures produced better results of mechanical resistance, and more regular/ homogeneous reaction layers between braze alloy and metal-ceramic surfaces. Also was proved the AgCu braze alloy activation in situ by titanium

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The construction industry is one of the largest consumers of natural raw materials, and concrete is considered today the most used material wide. This accentuated consumption of natural resources has generated concern with the preservation of the environment, and has motivated various studies related to the use of resid ues, which can partially or entirely substitute, with satisfactory performance, some materials such as the aggregate, and in so doing, decrease the impact on the environment caused by the produced residues. Research has been done to better understand and improve the microstructure of concrete, as well as to understand the mechanism of corrosion in reinforced steel. In this context, this work was developed aiming at discovering the influence of the substitution of natural sand by artificial sand, with rega rd to mechanical resistance, microstructure, and durability. To obtain the electrochemical parameters, an adaptation was made to the galvanostatic electrochemical method to study the corrosion in reinforced steel. Concretes of categories 20 MPa and 40 MPa were produced, containing natural sand, and concretes of the same categories were produced with artificial sand substituting the natural sand, and with the addition of sodium nitrate and sodium chloride. Due to the use of rock dust reject (artificial sand), an evaluation was made of its environmental risk. The results indicate that the concretes of category 20 MPa present a better performance than the concrete made with natural sand, thus making it a viable substitute. For the category 40 MPa, the better performance is from the concrete containing natural sand. The adaptation of the galvanostatic electrochemical technique to the study of the corrosion of reinforced steel within concrete proved to be valid for obtaining electrochemical parameters with a high degree of reliability, considering the number of degrees of freedom

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cementation operation consists in an extremely important work for the phases of perforation and completion of oil wells, causing a great impact on the well productivity. Several problems can occur with the cement during the primary cementation, as well as throughout the productive period. The corrective operations are frequent, but they are expensive and demands production time. Besides the direct cost, prejudices from the interruption of oil and gas production till the implementation of a corrective operation must be also taken into account. The purpose of this work is the development of an alternative cement paste constituted of Portland cement and porcelainized stoneware residue produced by ceramic industry in order to achieve characteristics as low permeability, high tenacity, and high mechanical resistance, capable of supporting various operations as production or oil wells recuperation. Four different concentration measures of hydrated paste were evaluated: a reference paste, and three additional ones with ceramic residue in concentrations of the order of 10%, 20% and 30% in relation to cement dough. High resistance and low permeability were found in high concentration of residues, as well as it was proved the pozolanic reactivity of the residue in relation to Portland cement, which was characterized through x-ray and thermogravimetry assays. It was evident the decrease of calcium hydroxide content, once it was substituted by formation of new hydrated products as it was added ceramic residue

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seizure resistance of several cast aluminium base alloys has been examined using a standard Hohman Wear Tester. Disks of aluminium base alloys were run against a standard aluminium 12% silicon base alloy. The seizure resistance of the alloys (as measured by the lowest bearing parameter reached before seizure) increased with hardness, yield and tensile strength. In Al-Si-Ni alloys where silicon and nickel have little solid solubility in α-aluminium and Si and Ni Al3 hard phases are formed, the minimum bearing parameter decreased with the parameter V (The product of vol. % of hard phases in the disk and the shoe). Apparently the silicon and NiAl3 particles provided discontinuities in the matrix and reduced the probability (1 − V) of the α-aluminium phase in the disk coming into contact with the α-aluminium phase in the shoe. The copper and magnesium containing Al-Si-Ni alloys with lesser volumes of hard phases exhibit considerably better seizure resistance indicating that a slight increase in the solute content or the hardness of the primary α-phase leads to a considerable increase in seizure resistance. Deformation during wear and seizure leads to fragmentation of the original hard particles into considerably smaller particles uniformly dispersed in the deformed α-aluminium matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We employ nanoindentation coupled with electrical contact resistance measurements for simultaneous characterization of the electrical and mechanical behaviors of a cellular assembly of carbon nanotubes (CNTs). Experimental results reveal two different responses that correspond to relatively dense and porous regions of the cellular structure. Distinct nonlinear electron transport characteristics are observed, which mainly originate from diffusive conductance in the CNT structure. In the denser region, differential conductance shows asymmetric minima at lower bias, implying that conductivity mainly results from bulk tunneling. However, the porous regions show insignificant differential conduction as opposed to the denser region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cell-implant adhesive strength is important for prostheses. In this paper, an investigation is described into the adhesion of bovine chondrocytes to Ti6Al4V-based substrates with different surface roughnesses and compositions. Cells were cultured for 2 or 5 days, to promote adhesion. The ease of cell removal was characterised, using both biochemical (trypsin) and mechanical (accelerated buoyancy and liquid flow) methods. Computational fluid dynamics (CFD) modelling has been used to estimate the shear forces applied to the cells by the liquid flow. A comparison is presented between the ease of cell detachment indicated using these methods, for the three surfaces investigated. © 2008 Materials Research Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The research work focused on the determination of guidelines for the production of an UHPFRCC, and the experimental investigation of the quality and the behaviour of this material in a highly demanding application, such as the impact resistance of structures. Specifically, the aim of this study is to present the results of an extended work on the development of an UHPFRCC and the experimental determination of the mechanical properties of the produced material. Furthermore, the paper will present preliminary experimental results on the impact resistance of Reinforced Concrete and UHPFRCC slab specimens. © 2012 Taylor & Francis Group.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This experimental study examines the role of formulated molecular weight between crosslink sites on the temperature resistance and mechanical properties of composites based on a polyimide containing a diphenyl thioether unit (PTI). The composites are fabricated by in situ polymerization of monomer reactants (PMR) using three monomeric ingredients: bis(3,4-dicarboxyphenyl) sulfide dianhydride (TDPA); 4,4'-methylene dianiline (MDA); and the monomethyl ester of norbornene anhydride (NE). By changing monomeric molar ratio, three formulations are prepared, in which formulated molecular weight between crosslink sites varies from 1487 to 3446 g mol(-1). Unidirectional composite laminates from each formulation and T300 carbon fibres are compression moulded and cut into a series of test specimens. By measuring the glass transition temperature (T-g), Mode I interlaminar fracture toughness (G(IC)) and other mechanical properties at room and elevated temperatures, the influences of formulated molecular weight on the temperature resistance and mechanical properties of PTI-based composites are investigated.