995 resultados para Matlab applications


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital information that is place- and time-specific, is increasingly becoming available on all aspects of the urban landscape. People (cf. the Social Web), places (cf. the Geo Web), and physical objects (cf. ubiquitous computing, the Internet of Things) are increasingly infused with sensors, actuators, and tagged with a wealth of digital information. Urban informatics research explores these emerging digital layers of the city at the intersection of people, place and technology. However, little is known about the challenges and new opportunities that these digital layers may offer to road users driving through today’s mega cities. We argue that this aspect is worth exploring in particular with regards to Auto-UI’s overarching goal of making cars both safer and more enjoyable. This paper presents the findings of a pilot study, which included 14 urban informatics research experts participating in a guided ideation (idea creation) workshop within a simulated environment. They were immersed into different driving scenarios to imagine novel urban informatics type of applications specific to the driving context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many substation applications require accurate time-stamping. The performance of systems such as Network Time Protocol (NTP), IRIG-B and one pulse per second (1-PPS) have been sufficient to date. However, new applications, including IEC 61850-9-2 process bus and phasor measurement, require accuracy of one microsecond or better. Furthermore, process bus applications are taking time synchronisation out into high voltage switchyards where cable lengths may have an impact on timing accuracy. IEEE Std 1588, Precision Time Protocol (PTP), is the means preferred by the smart grid standardisation roadmaps (from both the IEC and US National Institute of Standards and Technology) of achieving this higher level of performance, and integrates well into Ethernet based substation automation systems. Significant benefits of PTP include automatic path length compensation, support for redundant time sources and the cabling efficiency of a shared network. This paper benchmarks the performance of established IRIG-B and 1-PPS synchronisation methods over a range of path lengths representative of a transmission substation. The performance of PTP using the same distribution system is then evaluated and compared to the existing methods to determine if the performance justifies the additional complexity. Experimental results show that a PTP timing system maintains the synchronising performance of 1-PPS and IRIG-B timing systems, when using the same fibre optic cables, and further meets the needs of process buses in large substations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article sets out the results of an empirical research study into the uses to which the Australian patent system is being put in the early 21st century. The focus of the study is business method patents, which are of interest because they are a controversial class of patent that are thought to differ significantly from the mechanical, chemical and industrial inventions that have traditionally been the mainstay of the patent system. The purpose of the study is to understand what sort of business method patent applications have been lodged in Australia in the first decade of this century and how the patent office is responding to those applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The representation of business process models has been a continuing research topic for many years now. However, many process model representations have not developed beyond minimally interactive 2D icon-based representations of directed graphs and networks, with little or no annotation for information over- lays. With the rise of desktop computers and commodity mobile devices capable of supporting rich interactive 3D environments, we believe that much of the research performed in computer human interaction, virtual reality, games and interactive entertainment has much potential in areas of BPM; to engage, pro- vide insight, and to promote collaboration amongst analysts and stakeholders alike. This initial visualization workshop seeks to initiate the development of a high quality international forum to present and discuss research in this field. Via this workshop, we intend to create a community to unify and nurture the development of process visualization topics as a continuing research area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Outside the mass-spectrometer, proteomics research does not take place in a vacuum. It is affected by policies on funding and research infrastructure. Proteomics research both impacts and is impacted by potential clinical applications. It provides new techniques & clinically relevant findings, but the possibilities for such innovations (and thus the perception of the potential for the field by funders) are also impacted by regulatory practices and the readiness of the health sector to incorporate proteomics-related tools & findings. Key to this process is how knowledge is translated. Methods: We present preliminary results from a multi-year social science project, funded by the Canadian Institutes of Health Research, on the processes and motivations for knowledge translation in the health sciences. The proteomics case within this wider study uses qualitative methods to examine the interplay between proteomics science and regulatory and policy makers regarding clinical applications of proteomics. Results: Adopting an interactive format to encourage conference attendees’ feedback, our poster focuses on deficits in effective knowledge translation strategies from the laboratory to policy, clinical, & regulatory arenas. An analysis of the interviews conducted to date suggests five significant choke points: the changing priorities of funding agencies; the complexity of proteomics research; the organisation of proteomics research; the relationship of proteomics to genomics and other omics sciences; and conflict over the appropriate role of standardisation. Conclusion: We suggest that engagement with aspects of knowledge translation, such as those mentioned above, is crucially important for the eventual clinical application ofproteomics science on any meaningful scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New substation automation applications, such as sampled value process buses and synchrophasors, require sampling accuracy of 1 µs or better. The Precision Time Protocol (PTP), IEEE Std 1588, achieves this level of performance and integrates well into Ethernet based substation networks. This paper takes a systematic approach to the performance evaluation of commercially available PTP devices (grandmaster, slave, transparent and boundary clocks) from a variety of manufacturers. The ``error budget'' is set by the performance requirements of each application. The ``expenditure'' of this error budget by each component is valuable information for a system designer. The component information is used to design a synchronization system that meets the overall functional requirements. The quantitative performance data presented shows that this testing is effective and informative. Results from testing PTP performance in the presence of sampled value process bus traffic demonstrate the benefit of a ``bottom up'' component testing approach combined with ``top down'' system verification tests. A test method that uses a precision Ethernet capture card, rather than dedicated PTP test sets, to determine the Correction Field Error of transparent clocks is presented. This test is particularly relevant for highly loaded Ethernet networks with stringent timing requirements. The methods presented can be used for development purposes by manufacturers, or by system integrators for acceptance testing. A sampled value process bus was used as the test application for the systematic approach described in this paper. The test approach was applied, components were selected, and the system performance verified to meet the application's requirements. Systematic testing, as presented in this paper, is applicable to a range of industries that use, rather than develop, PTP for time transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart antenna receiver and transmitter systems consist of multi-port arrays with an individual receiver channel (including ADC) and an individual transmitter channel (including DAC)at every of the M antenna ports, respectively. By means of digital beamforming, an unlimited number of simultaneous complex-valued vector radiation patterns with M-1 degrees of freedom can be formed. Applications of smart antennas in communication systems include space-division multiple access. If both stations of a communication link are equipped with smart antennas (multiple-input-multiple-output, MIMO). multiple independent channels can be formed in a "multi-path-rich" environment. In this article, it will be shown that under certain circumstances, the correlation between signals from adjacent ports of a dense array (M + ΔM elements) can be kept as low as the correlation between signals from adjacent ports of a conventional array (M elements and half-wavelength pacing). This attractive feature is attained by means of a novel approach which employs a RF decoupling network at the array ports in order to form new ports which are decoupled and associated with mutually orthogonal (de-correlated) radiation patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most social network users hold more than one social network account and utilize them in different ways depending on the digital context. For example, friendly chat on Facebook, professional discussion on LinkedIn, and health information exchange on PatientsLikeMe. Thus many web users need to manage many disparate profiles across many distributed online sources. Maintaining these profiles is cumbersome, time consuming, inefficient, and leads to lost opportunity. In this paper we propose a framework for multiple profile management of online social networks and showcase a demonstrator utilising an open source platform. The result of the research enables a user to create and manage an integrated profile and share/synchronise their profiles with their social networks. A number of use cases were created to capture the functional requirements and describe the interactions between users and the online services. An innovative application of this project is in public health informatics. We utilize the prototype to examine how the framework can benefit patients and physicians. The framework can greatly enhance health information management for patients and more importantly offer a more comprehensive personal health overview of patients to physicians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A contentious issue in the field of destination marketing has been the recent tendency by some authors to refer to destination marketing organisations (DMOs) as destination management organisations. This nomenclature infers control over destination resources, a level of influence that is in reality held by few DMOs. This issue of a lack of control over the destination ‘amalgam’ is acknowledged by a number of the contributors, including the editors and the discussion on destination competitiveness by J.R. Brent Ritchie and Geoffrey Crouch, and is perhaps best summed up by Alan Fyall in the concluding chapter: “...unless all elements are owned by the same body, then the ability to control and influence the direction, quality and development of the destination pose very real challenges’ (p. 343). The title of the text acknowledges both marketing and management, in relation to theories and applications. While there are insightful propositions about ideals of destination management, readers will find there is a lack of coverage of destination management in practise by DMOs. This represents fertile ground for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and design of electric high power devices with electromagnetic computer-aided engineering (EM-CAE) software such as the Finite Element Method (FEM) and Boundary Element Method (BEM) has been widely adopted. This paper presents the analysis of a Fault Current Limiter (FCL), which acts as a high-voltage surge protector for power grids. A prototype FCL was built. The magnetic flux in the core and the resulting electromagnetic forces in the winding of the FCL were analyzed using both FEM and BEM. An experiment on the prototype was conducted in a laboratory. The data obtained from the experiment is compared to the numerical solutions to determine the suitability and accuracy of the two methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the rapidly urbanising population, public transport usage in metropolitan areas is not growing at a level that corresponds to the trend. Many people are reluctant to travel using public transport, as it is commonly associated with unpleasant experiences such as limited services, long wait time, and crowded spaces. This study aims to explore the use of mobile spatial interactions and services, and investigate their potential to increase the enjoyment of our everyday commuting experience. The main goal is to develop and evaluate mobile-mediated design interventions to foster interactions for and among passengers, as well as between passengers and public transport infrastructures, with the aim to positively influence the experience of commuting. Ultimately, this study hopes to generate findings and knowledge towards creating a more enjoyable public transport experience, as well as to explore innovative uses of mobile technologies and context-aware services for the urban lifestyle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an efficient face detection method suitable for real-time surveillance applications. Improved efficiency is achieved by constraining the search window of an AdaBoost face detector to pre-selected regions. Firstly, the proposed method takes a sparse grid of sample pixels from the image to reduce whole image scan time. A fusion of foreground segmentation and skin colour segmentation is then used to select candidate face regions. Finally, a classifier-based face detector is applied only to selected regions to verify the presence of a face (the Viola-Jones detector is used in this paper). The proposed system is evaluated using 640 x 480 pixels test images and compared with other relevant methods. Experimental results show that the proposed method reduces the detection time to 42 ms, where the Viola-Jones detector alone requires 565 ms (on a desktop processor). This improvement makes the face detector suitable for real-time applications. Furthermore, the proposed method requires 50% of the computation time of the best competing method, while reducing the false positive rate by 3.2% and maintaining the same hit rate.