754 resultados para Mathematical problem solving


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo tem como principal objetivo compreender e analisar o modo como crianças de creche e jardim-de-infância resolvem problemas matemáticos e o que pode constranger a resolução. Em particular, procurei analisar a atividade matemática que as crianças desenvolvem quando se confrontam com problemas matemáticos e os desafios com que se deparam. Do ponto de vista metodológico, o estudo enquadra-se numa abordagem qualitativa de investigação e num paradigma interpretativo. Além disso, trata-se de uma investigação-ação orientada pela questão “como otimizar a atividade de resolver problemas matemáticos em contextos de educação de infância?”. Neste âmbito, propus a quatro crianças de creche e a 21 de jardim-de-infância um conjunto de tarefas selecionadas para, potencialmente, terem, para si, algum grau de desafio. Os principais métodos de recolha de dados foram a observação participante, a análise documental e um inquérito por questionário realizado às educadoras cooperantes. O estudo ilustra que é possível envolver crianças de creche e de jardim-de-infância numa atividade de resolução de problemas matemáticos e que esta atividade é favorecida se o contexto dos problemas estiver próximo do que fazem no dia-a-dia da sala. Durante o processo de resolução das tarefas propostas, foram mobilizadas e trabalhadas diversas noções matemáticas. Na creche, todas as crianças evidenciaram possuir conhecimentos acerca da noção topológica “dentro de” e “fora de” e algumas foram bem-sucedidas no uso do processo de classificação, tendo em conta um critério. Neste âmbito, recorreram a representações ativas. No jardim-de-infância, todas as crianças conseguiram fazer a contagem sincronizada das letras do seu nome, de indicar a quantidade de letras, o que indicia o conhecimento da noção de cardinal, e de representar esta quantidade recorrendo tanto a numerais como a representações icónicas. Além disso, foram capazes de interpretar uma tabela de modo a construir um gráfico com barras e de elaborar um pictograma, o que revela possuírem conhecimentos ao nível da literacia estatística. Por último, algumas crianças foram bem-sucedidas na descoberta de estratégias de resolução de problemas que lhes permitiram inventariar exaustivamente todas as possibilidades de resolução e contar, organizadamente, estas possibilidades. No decurso desta atividade surgiram tentativas de generalização, embora nem sempre corretas, sobressaindo o recurso a representações ativas nomeadamente à dramatização de situações. Quanto aos desafios com que se depararam destacam-se, no caso da creche, o uso correto do processo de classificação. No caso do jardim-de-infância, as crianças demonstraram dificuldades em distinguir a legenda do pictograma dos dados, em resolver um problema em que estava em jogo o sentido combinatório da multiplicação e em encontrar estratégias de generalização. O estudo indicia, ainda, que é essencial que o educador proponha tarefas diversificadas e desafiantes que, partindo sempre da curiosidade e interesse das crianças, lhes permitam trabalhar com ideias matemáticas importantes e representar adequadamente o conhecimento com que lidam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to raise a debate on the urgent need for teachers to generate innovative situations in the teaching-learning process, in the field of Mathematics, as a way for students to develop logical reasoning and research skills applicable to everyday situations. It includes some statistical data and possible reasons for the poor performance and dissatisfaction of students towards Mathematics. Since teachers are called to offer meaningful and functional learning experiences to students, in order to promote the pleasure of learning, teacher training should include experiences that can be put into practice by teachers in the education centers. This paper includes a work proposal for Mathematics Teaching to generate discussion, curiosity and logical reasoning in students, together with the Mathematical problem solving study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a framework based on the decomposition of the first-order optimality conditions is described and applied to solve the Probabilistic Power Flow (PPF) problem in a coordinated but decentralized way in the context of multi-area power systems. The purpose of the decomposition framework is to solve the problem through a process of solving smaller subproblems, associated with each area of the power system, iteratively. This strategy allows the probabilistic analysis of the variables of interest, in a particular area, without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. An efficient method for probabilistic analysis, considering uncertainty in n system loads, is applied. The proposal is to use a particular case of the point estimate method, known as Two-Point Estimate Method (TPM), rather than the traditional approach based on Monte Carlo simulation. The main feature of the TPM is that it only requires resolve 2n power flows for to obtain the behavior of any random variable. An iterative coordination algorithm between areas is also presented. This algorithm solves the Multi-Area PPF problem in a decentralized way, ensures the independent operation of each area and integrates the decomposition framework and the TPM appropriately. The IEEE RTS-96 system is used in order to show the operation and effectiveness of the proposed approach and the Monte Carlo simulations are used to validation of the results. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents one approach to addressing the important issue of interdisciplinarity in the primary school mathematics curriculum, namely, through realistic mathematical modelling problems. Such problems draw upon other disciplines for their contexts and data. The article initially considers the nature of modelling with complex systems and discusses how such experiences differ from existing problem-solving activities in the primary mathematics curriculum. Principles for designing interdisciplinary modelling problems are then addressed, with reference to two mathematical modelling problems— one based in the scientific domain and the other in the literary domain. Examples of the models children have created in solving these problems follow. A reflection on the differences in the diversity and sophistication of these models raises issues regarding the design of interdisciplinary modelling problems. The article concludes with suggested opportunities for generating multidisciplinary projects within the regular mathematics curriculum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to explore the role of leadership in problem-oriented policing (POP). Design/methodology/approach – This paper uses interrupted time series models to isolate the impact on crime trends of a transformational leader's efforts to spearhead the implementation of a program of POP, called the problem solving model (PSM), in a southern state in Australia. Findings – This paper finds that the PSM led directly to an impact on overall crime, with a significant reduction in crimes per 100,000 persons per year after the introduction of the PSM. The majority of the overall crime drop attributable to implementation of POP was driven by reductions in property crime. It was noted that the leadership influence of the PSM was not effective in reducing all types of crime. Crimes against the person where not affected by the introduction of the PSM and public nuisance crimes largely followed the forecasted, upward trajectory. Practical implications – The driver behind the PSM was Commissioner Hyde and the success of the PSM is largely attributable to his strong commitment to transformational leadership and a top-down approach to implementation. These qualities encapsulate the original ideas behind POP that Goldstein (1979, 2003), back in 1979, highlighted as critical for the success of future POP programs. Social implications – Reducing crime is an important part of creating safe communities and improving quality of life for all citizens. This research shows that successful implementation of the PSM within South Australia under the strong leadership of Commissioner Hyde was a major factor in reducing property crime and overall crime rates. Originality/value – This paper is valuable because it demonstrates the link between strong leadership in policing, the commissioner's vision for POP and how his vision then translated into widespread adoption of POP. The study empirically shows that the statewide adoption of POP led to significant reductions in crime, particularly property crime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasing range of technology services are now offered on a self-service basis. However, problems with self-service technologies (SSTs) occur at times due to the technical error, staff error, or consumers’ own mistakes. Considering the role of consumers as co-producers in the SST context, we aim to study consumer’s behaviours, strategies, and decision making in solving their problem with SST and identify the factors contributing to their persistence in solving the problem. This study contributes to the information systems research, as it is the first study that aims to identify such a process and the factors affecting consumers’ persistence in solving their problem with SST. A focus group with user support staff has been conducted, yielding some initial results that helped to conduct the next phases of the study. Next, using Critical Incident Technique, data will be gathered through focus groups with users, diary method, and think-aloud method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter addresses opportunities for problem posing in developing young children’s statistical literacy, with a focus on student-directed investigations. Although the notion of problem posing has broadened in recent years, there nevertheless remains limited research on how problem posing can be integrated within the regular mathematics curriculum, especially in the areas of statistics and probability. The chapter first reviews briefly aspects of problem posing that have featured in the literature over the years. Consideration is next given to the importance of developing children’s statistical literacy in which problem posing is an inherent feature. Some findings from a school playground investigation conducted in four, fourth-grade classes illustrate the different ways in which children posed investigative questions, how they made predictions about their outcomes and compared these with their findings, and the ways in which they chose to represent their findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering-based modeling activities provide a rich source of meaningful situations that capitalize on and extend students’ routine learning. By integrating such activities within existing curricula, students better appreciate how their school learning in mathematics and science applies to problems in the outside world...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores two aspects of mathematical reasoning: affect and gender. I started by looking at the reasoning of upper secondary students when solving tasks. This work revealed that when not guided by an interviewer, algorithmic reasoning, based on memorising algorithms which may or may not be appropriate for the task, was predominant in the students reasoning. Given this lack of mathematical grounding in students reasoning I looked in a second study at what grounds they had for different strategy choices and conclusions. This qualitative study suggested that beliefs about safety, expectation and motivation were important in the central decisions made during task solving.  But are reasoning and beliefs gendered? The third study explored upper secondary school teachers conceptions about gender and students mathematical reasoning. In this study I found that upper secondary school teachers attributed gender symbols including insecurity, use of standard methods and imitative reasoning to girls and symbols such as multiple strategies especially on the calculator, guessing and chance-taking were assigned to boys. In the fourth and final study I found that students, both male and female, shared their teachers view of rather traditional feminities and masculinities. Remarkably however, this result did not repeat itself when students were asked to reflect on their own behaviour: there were some discrepancies between the traits the students ascribed as gender different and the traits they ascribed to themselves. Taken together the thesis suggests that, contrary to conceptions, girls and boys share many of the same core beliefs about mathematics, but much work is still needed if we should create learning environments that provide better opportunities for students to develop beliefs that guide them towards well-grounded mathematical reasoning. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical programming problems with equilibrium constraints (MPEC) are nonlinear programming problems where the constraints have a form that is analogous to first-order optimality conditions of constrained optimization. We prove that, under reasonable sufficient conditions, stationary points of the sum of squares of the constraints are feasible points of the MPEC. In usual formulations of MPEC all the feasible points are nonregular in the sense that they do not satisfy the Mangasarian-Fromovitz constraint qualification of nonlinear programming. Therefore, all the feasible points satisfy the classical Fritz-John necessary optimality conditions. In principle, this can cause serious difficulties for nonlinear programming algorithms applied to MPEC. However, we show that most feasible points do not satisfy a recently introduced stronger optimality condition for nonlinear programming. This is the reason why, in general, nonlinear programming algorithms are successful when applied to MPEC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A branch and bound algorithm is proposed to solve the [image omitted]-norm model reduction problem for continuous and discrete-time linear systems, with convergence to the global optimum in a finite time. The lower and upper bounds in the optimization procedure are described by linear matrix inequalities (LMI). Also proposed are two methods with which to reduce the convergence time of the branch and bound algorithm: the first one uses the Hankel singular values as a sufficient condition to stop the algorithm, providing to the method a fast convergence to the global optimum. The second one assumes that the reduced model is in the controllable or observable canonical form. The [image omitted]-norm of the error between the original model and the reduced model is considered. Examples illustrate the application of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this action research study of my classroom of ten ninth grade algebra students, I investigated how my students expressed written solutions of mathematical word problems. I discovered that my students writing and performance improved as they experienced different strategies to attack problem solving. These experiences helped improve the confidence of my students in their problem solving skills and in their mathematical writing. I also discovered that my teaching style changed, as my students took on more responsibility for their learning. As a result of this research, I plan to implement problem solving activities in all my classrooms next year. I also plan to have my students develop their written communication skills by presenting their solutions to their problem solving activities in writing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this action research study of my sixth grade mathematics class, I investigated the influence a change in my questioning tactics would have on students’ ability to determine answer reasonability to mathematics problems. During the course of my research, students were asked to explain their problem solving and solutions. Students, amongst themselves, discussed solutions given by their peers and the reasonability of those solutions. They also completed daily questionnaires that inquired about my questioning practices, and 10 students were randomly chosen to be interviewed regarding their problem solving strategies. I discovered that by placing more emphasis on the process rather than the product, students became used to questioning problem solving strategies and explaining their reasoning. I plan to maintain this practice in the future while incorporating more visual and textual explanations to support verbal explanations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.