923 resultados para Mathematical Cardiovascular Model
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Issued October 1977.
Resumo:
Mode of access: Internet.
Resumo:
"Issued March 1981."
Resumo:
"April 1983."
Resumo:
Mode of access: Internet.
Resumo:
A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones-a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Haptotactic cell migration, a directed response to gradients of cell—extracellular matrix adhesion, is an important process in a number of biological phenomena such as wound healing and tumour cell invasion. Previously, mathematical models of haptotaxis have been developed on the premise that cells migrate in response to gradients in the density of the extracellular matrix. In this paper, we develop a novel mathematical model of haptotaxis which includes the adhesion receptors known as integrins and a description of their functional activation, local recruitment and protrusion as part of lamellipodia. Through the inclusion of integrins, the modelled cell matter is able to respond to a true gradient of cell–matrix adhesion, represented by functionally active integrins. We also show that previous matrix-mediated models are in fact a subset of the novel integrin-mediated models, characterised by specific choices of diffusion and haptotaxis coefficients in their model equations. Numerical solutions suggest the existence of travelling waves of cell migration that are confirmed via a phase plane analysis of a simplified model.
Resumo:
We propose a new mathematical model for efficiency analysis, which combines DEA methodology with an old idea-Ratio Analysis. Our model, called DEA-R, treats all possible ratios "output/input" as outputs within the standard DEA model. Although DEA and DEA-R generate different summary measures for efficiency, the two measures are comparable. Our mathematical and empirical comparisons establish the validity of DEA-R model in its own right. The key advantage of DEA-R over DEA is that it allows effective integration of the model with experts' opinions via flexible restrictive conditions on individual "output/input" pairs. © 2007 Springer Science+Business Media, LLC.
Resumo:
Purpose – A binary integer programming model for the simple assembly line balancing problem (SALBP), which is well known as SALBP-1, was formulated more than 30 years ago. Since then, a number of researchers have extended the model for the variants of assembly line balancing problem.The model is still prevalent nowadays mainly because of the lower and upper bounds on task assignment. These properties avoid significant increase of decision variables. The purpose of this paper is to use an example to show that the model may lead to a confusing solution. Design/methodology/approach – The paper provides a remedial constraint set for the model to rectify the disordered sequence problem. Findings – The paper presents proof that the assembly line balancing model formulated by Patterson and Albracht may lead to a confusing solution. Originality/value – No one previously has found that the commonly used model is incorrect.
Resumo:
In this paper we propose a data envelopment analysis (DEA) based method for assessing the comparative efficiencies of units operating production processes where input-output levels are inter-temporally dependent. One cause of inter-temporal dependence between input and output levels is capital stock which influences output levels over many production periods. Such units cannot be assessed by traditional or 'static' DEA which assumes input-output correspondences are contemporaneous in the sense that the output levels observed in a time period are the product solely of the input levels observed during that same period. The method developed in the paper overcomes the problem of inter-temporal input-output dependence by using input-output 'paths' mapped out by operating units over time as the basis of assessing them. As an application we compare the results of the dynamic and static model for a set of UK universities. The paper is suggested that dynamic model capture the efficiency better than static model. © 2003 Elsevier Inc. All rights reserved.
Resumo:
A mathematical model of a large coal-fired fluidized bed boiler for power generation is synthesised. The effect of variations in the main parameters of the model on variables such as the background carbon concentrations in the bed, and the transient response of heat evolution are studied. The mechanisms of solids mixing within the bed, combustion and the flow of heat to the boiler tubes are shown to result in a characteristic dynamic response, knowledge of which is essential for the proper control and regulation of a practical system.