970 resultados para Magnetotactic Bacteria
Resumo:
Many Gram-negative bacteria possess a type III secretion system (TTSS( paragraph sign)) that can activate the NLRC4 inflammasome, process caspase-1 and lead to secretion of mature IL-1beta. This is dependent on the presence of intracellular flagellin. Previous reports have suggested that this activation is independent of extracellular K(+) and not accompanied by leakage of K(+) from the cell, in contrast to activation of the NLRP3 inflammasome. However, non-flagellated strains of Pseudomonas aeruginosa are able to activate NLRC4, suggesting that formation of a pore in the cell membrane by the TTSS apparatus may be sufficient for inflammasome activation. Thus, we set out to determine if extracellular K(+) influenced P. aeruginosa inflammasome activation. We found that raising extracellular K(+) prevented TTSS NLRC4 activation by the non-flagellated P. aeruginosa strain PA103DeltaUDeltaT at concentrations above 90 mm, higher than those reported to inhibit NLRP3 activation. Infection was accompanied by efflux of K(+) from a minority of cells as determined using the K(+)-sensitive fluorophore PBFI, but no formation of a leaky pore. We obtained exactly the same results following infection with Salmonella typhimurium, previously described as independent of extracellular K(+). The inhibitory effect of raised extracellular K(+) on NLRC4 activation thus reflects a requirement for a decrease in intracellular K(+) for this inflammasome component as well as that described for NLRP3.
Resumo:
Report for the scientific sojourn carried out at the l’ Institute for Computational Molecular Science of the Temple University, United States, from 2010 to 2012. Two-component systems (TCS) are used by pathogenic bacteria to sense the environment within a host and activate mechanisms related to virulence and antimicrobial resistance. A prototypical example is the PhoQ/PhoP system, which is the major regulator of virulence in Salmonella. Hence, PhoQ is an attractive target for the design of new antibiotics against foodborne diseases. Inhibition of the PhoQ-mediated bacterial virulence does not result in growth inhibition, presenting less selective pressure for the generation of antibiotic resistance. Moreover, PhoQ is a histidine kinase (HK) and it is absent in animals. Nevertheless, the design of satisfactory HK inhibitors has been proven to be a challenge. To compete with the intracellular ATP concentrations, the affinity of a HK inhibidor must be in the micromolar-nanomolar range, whereas the current lead compounds have at best millimolar affinities. Moreover, the drug selectivity depends on the conformation of a highly variable loop, referred to as the “ATP-lid, which is difficult to study by X-Ray crystallography due to its flexibility. I have investigated the binding of different HK inhibitors to PhoQ. In particular, all-atom molecular dynamics simulations have been combined with enhanced sampling techniques in order to provide structural and dynamic information of the conformation of the ATP-lid. Transient interactions between these drugs and the ATP-lid have been identified and the free energy of the different binding modes has been estimated. The results obtained pinpoint the importance of protein flexibility in the HK-inhibitor binding, and constitute a first step in developing more potent and selective drugs. The computational resources of the hosting institution as well as the experience of the members of the group in drug binding and free energy methods have been crucial to carry out this work.
Resumo:
Antibiotic-resistant pathogens are a major health concern in everyday clinical practice. Because their detection by conventional microbial techniques requires minimally 24 h, some of us have recently introduced a nanomechanical sensor, which can reveal motion at the nanoscale. By monitoring the fluctuations of the sensor, this technique can evidence the presence of bacteria and their susceptibility to antibiotics in less than 1 h. Their amplitude correlates to the metabolism of the bacteria and is a powerful tool to characterize these microorganisms at low densities. This technique is new and calls for an effort to optimize its protocol and determine its limits. Indeed, many questions remain unanswered, such as the detection limits or the correlation between the bacterial distribution on the sensor and the detection's output. In this work, we couple fluorescence microscopy to the nanomotion investigation to determine the optimal experimental protocols and to highlight the effect of the different bacterial distributions on the sensor.
Resumo:
OBJECTIVE:: Lactic acid bacteria (LAB) are used in food industries as probiotic agents. The aim of this study is to assess the potential health effects of airborne exposure to a mix of preblend (LAB and carbohydrate) and milk powder in workers. METHODS:: A medical questionnaire, lung function tests, and immunologic tests were carried out on 50 workers. Occupational exposure to inhalable dust and airborne LAB was measured. RESULTS:: Workers not using respiratory masks reported more symptoms of irritation than workers using protection. Workers from areas with higher levels of airborne LAB reported the most health symptoms and the immune responses of workers to LAB was higher than the immune responses of a control population. CONCLUSIONS:: Measures to reduce exposure to airborne LAB and milk powder in food industries are recommended.
Resumo:
Abstract The plasmid pME6863, carrying the aiiA gene from the soil bacterium Bacillus sp. A24 that encodes a lactonase enzyme able to degrade N-acyl-homoserine lactones (AHLs), was introduced into the rhizosphere isolate Pseudomonas fluorescens P3. This strain is not an effective biological control agent against plant pathogens. The transformant P. fluorescens P3/pME6863 acquired the ability to degrade AHLs. In planta, P. fluorescens P3/pME6863 significantly reduced potato soft rot caused by Erwinia carotovora and crown gall of tomato caused by Agrobacterium tumefaciens to a similar level as Bacillus sp. A24. Little or no disease reduction was observed for the wild-type strain P3 carrying the vector plasmid without aiiA. Suppression of potato soft rot was observed even when the AHL-degrading P. fluorescens P3/pME6863 was applied to tubers 2 days after the pathogen, indicating that biocontrol was not only preventive but also curative. When antagonists were applied individually with the bacterial plant pathogens, biocontrol activity of the AHL degraders was greater than that observed with several Pseudomonas 2,4-diacetylphloroglucinol-producing strains and with Pseudomonas chlororaphis PCL1391, which relies on production of phenazine antibiotic for disease suppression. Phenazine production by this well characterized biological control strain P. chlororaphis PCL1391 is regulated by AHL-mediated quorum sensing. When P. chlororaphis PCL1391 was co-inoculated with P. fluorescens P3/pME6863 in a strain mixture, the AHL degrader interfered with the normally excellent ability of the antibiotic producer to suppress tomato vascular wilt caused by Fusarium oxysporum f. sp. lycopersici. Our results demonstrate AHL degradation as a novel biocontrol mechanism, but also demonstrate the potential for non-target interactions that can interfere with the biocontrol efficacy of other strains.
Resumo:
Endocarditis is a common disease in hospital practice. Identification of the microorganism responsible for the valvular damage is essential to establish the prognosis and to determine the optimal antibiotic treatment. In some cases of endocarditis the diagnosis is laborious, especially when the responsible microorganism is difficult to detect using standard culture techniques. Here we report a case of native aortic valve endocarditis due to Kingella kingae, a Gram negative organism of the HACEK group. In addition we review 6 other cases of endocarditis caused by organism belonging to this group, treated in our hospital between 1983 and 1999. Epidemiological studies show that less than 5% of all cases of endocarditis are caused by organisms of the HACEK group. The diagnosis is often delayed because their slow growth on a standard culture medium. We describe clinical and microbiological characteristics of this group of endocarditis.
Resumo:
Endosymbiosis is a mutualistic, parasitic or commensal symbiosis in which one symbiont is living within the body of another organism. Such symbiotic relationship with free-living amoebae and arthropods has been reported with a large biodiversity of microorganisms, encompassing various bacterial clades and to a lesser extent some fungi and viruses. By contrast, current knowledge on symbionts of nematodes is still mainly restricted to Wolbachia and its interaction with filarial worms that lead to increased pathogenicity of the infected nematode. In this review article, we aim to highlight the main characteristics of symbionts in term of their ecology, host cell interactions, parasitism and co-evolution, in order to stimulate future research in a field that remains largely unexplored despite the availability of modern tools.
Resumo:
Monitoring of Iowa's surface waters during the past five years has demonstrated the regular occurrence of fecel bacteria in surface water resources.
Resumo:
This monthly report from the Iowa Department of Transportation is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
This fact sheet answers questions such as, is it safe to swim in the water and who is monitoring the beaches in Iowa
Resumo:
AIMS: To assess the impact of the biocontrol strain Pseudomonas fluorescens CHA0 on a collection of barley rhizosphere bacteria using an agar plate inhibition assay and a plant microcosm, focusing on a CHA0-sensitive member of the Cytophaga-like bacteria (CLB). METHODS AND RESULTS: The effect of strain CHA0 on a collection of barley rhizosphere bacteria, in particular CLB and fluorescent pseudomonads sampled during a growth season, was assessed by a growth inhibition assay. On average, 85% of the bacteria were sensitive in the May sample, while the effect was reduced to around 68% in the July and August samples. In the May sample, around 95% of the CLB and around 45% of the fluorescent pseudomonads were sensitive to strain CHA0. The proportion of CHA0-sensitive CLB and fluorescent pseudomonad isolates decreased during the plant growth season, i.e. in the July and August samples. A particularly sensitive CLB isolate, CLB23, was selected, exposed to strain CHA0 (wild type) and its genetically modified derivatives in the rhizosphere of barley grown in gnotobiotic soil microcosms. Two dry-stress periods were imposed during the experiment. Derivatives of strain CHA0 included antibiotic or exopolysaccharide (EPS) overproducing strains and a dry-stress-sensitive mutant. Despite their inhibitory activity against CLB23 in vitro, neither wild-type strain CHA0, nor any of its derivatives, had a major effect on culturable and total cell numbers of CLB23 during the 23-day microcosm experiment. Populations of all inoculants declined during the two dry-stress periods, with soil water contents below 5% and plants reaching the wilting point, but they recovered after re-wetting the soil. Survival of the dry-stress-sensitive mutant of CHA0 was most affected by the dry periods; however, this did not result in an increased population density of CLB23. CONCLUSIONS: CLB comprise a large fraction of barley rhizosphere bacteria that are sensitive to the biocontrol pseudomonad CHA0 in vitro. However, in plant microcosm experiments with varying soil humidity conditions, CHA0 or its derivatives had no major impact on the survival of the highly sensitive CLB strain, CLB23, during two dry-stress periods and a re-wetting period; all co-existed well in the rhizosphere of barley plants. SIGNIFICANCE AND IMPACT OF THE STUDY: Results indicate a lack of interaction between the biocontrol pseudomonad CHA0 and a sensitive CLB when the complexity increases from agar plate assays to plant microcosm experiments. This suggests the occurrence of low levels of antibiotic production and/or that the two bacterial genera occupy different niches in the rhizosphere.
Resumo:
Pterotaenia fasciata is commonly recorded in rural areas in Argentina, but during a Diptera survey study developed in a reservoir which retains storm water from polluted canals in an urban area of Taboão da Serra municipality, SP, Brazil, we could capture P. fasciata adults. Enteric bacteria Escherichia coli T. Escherich, 1885 and Proteus sp. were isolated from P. fasciata collected in traps inside the reservoir and around it. Fecal coliforms and E. coli were found in the water of the reservoir. These records suggest that a high abundance of this species at urban areas with inadequate sewage canals should reveal these muscoid dipterans as mechanical vectors of enteric bacteria.
Resumo:
The oxalate-carbonate pathway (OCP) leads to a potential carbon sink in terrestrial environments. This process is linked to the activity of oxalotrophic bacteria. Although isolation and molecular characterizations are used to study oxalotrophic bacteria, these approaches do not give information on the active oxalotrophs present in soil undergoing the OCP. The aim of this study was to assess the diversity of active oxalotrophic bacteria in soil microcosms using the Bromodeoxyuridine (BrdU) DNA labeling technique. Soil was collected near an oxalogenic tree (Milicia excelsa). Different concentrations of calcium oxalate (0.5%, 1%, and 4% w/w) were added to the soil microcosms and compared with an untreated control. After 12days of incubation, a maximal pH of 7.7 was measured for microcosms with oxalate (initial pH 6.4). At this time point, a DGGE profile of the frc gene was performed from BrdU-labeled soil DNA and unlabeled soil DNA. Actinobacteria (Streptomyces- and Kribbella-like sequences), Gammaproteobacteria and Betaproteobacteria were found as the main active oxalotrophic bacterial groups. This study highlights the relevance of Actinobacteria as members of the active bacterial community and the identification of novel uncultured oxalotrophic groups (i.e. Kribbella) active in soils.
Resumo:
La investigación realizada en el 2007, comprende la patobiología y sanidad acuícola en langostinos de cultivo y de los canales de marea de la Región Tumbes, para detectar presencia y distribución espacio-temporal del agente etiológico NHPB (Bacteria de la hepatopancreatitis necrotizante). Se analizaron 3360 langostinos de nueve empresas con cultivo intensivo para detectar la NHBP. Los resultados fueron: (1) prevalencia global de 2% en el periodo de estudio; (2) NHPB estuvo presente en el 77% de las zonas con cultivo intensivo incluidas en este estudio, distribuidas a lo largo del litoral tumbesino.