949 resultados para Magnetic Stimulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary - Vitamin D can improve muscle function and reduce falls, but whether it can strengthen neural connections within the brain and nervous system is not known. This 10-week randomised controlled trial indicates that treatment with 2,000 IU/day vitamin D3 does not significantly alter neuroplasticity relative to placebo in older adults.
Introduction - The purpose of this study was to examine the effects of vitamin D supplementation on neuroplasticity, serum brain-derived neurotrophic factor (BDNF) and muscle strength and function in older adults.
Methods - This was a 10-week double-blinded, placebo-controlled randomised trial in which 26 older adults with 25-hydroxyvitamin D [25OHD] concentrations 25–60 nmol/L were randomised to 2,000 IU/day vitamin D3 or matched placebo. Single- and paired-pulse transcranial magnetic stimulation applied over the motor cortex was used to assess changes in motor-evoked potentials (MEPs) and short-interval intracortical inhibition (SICI), as measures of corticospinal excitability and inhibition respectively, by recording electromyography (EMG) responses to stimulation from the wrist extensors. Changes in muscle strength, stair climbing power, gait (timed-up-and-go), dynamic balance (four square step test), serum 25(OH)D and BDNF concentrations were also measured.
Results - After 10 weeks, mean 25(OH)D levels increased from 46 to 81 nmol/L in the vitamin D group with no change in the placebo group. The vitamin D group experienced a significant 8–11 % increase in muscle strength and a reduction in cortical excitability (MEP amplitude) and SICI relative to baseline (all P < 0.05), but these changes were not significantly different from placebo. There was no effect of vitamin D on muscle power, function or BDNF.
Conclusions - Daily supplementation with 2,000 IU vitamin D3 for 10 weeks had no significant effect on neuroplasticity compared to placebo, but the finding that vitamin D treatment alone was associated with a decrease in corticospinal excitability and intracortical inhibition warrants further investigation as this suggests that it may improve the efficacy of neural transmission within the corticospinal pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There have been inconsistencies in the literature regarding asymmetrical neural control and results of experiments using TMS techniques. Therefore, the aim of this study was to further our understanding of the neural relationships that may underlie performance asymmetry with respect to the distal muscles of the hand using a TMS stimulus–response curve technique. Twenty-four male subjects (12 right handed, 12 left handed) participated in a TMS stimulus–response (S–R) curve trial. Focal TMS was applied over the motor cortex to find the optimal position for the first dorsal interossei muscle and to determine rest threshold (RTh). Seven TMS intensities ranging from 90 to 150 % of RTh were delivered in 10 % increments. One single TMS block consisted of 16 stimuli at each intensity. Peak-to-peak amplitudes were measured and the S–R curve generated. In right-handed subjects, the mean difference in slopes between the right and left hand was −0.011 ± 0.03, while the mean difference between hands in left-handed subjects was −0.049 ± 0.08. Left-handed normalized data in right handers displayed a mean of 1.616 ± 1.019 (two-tailed t test p < 0.05). The left-handed group showed a significant change in the normalized slope as indicated by a mean of 1.693 ± 0.149 (two-tailed t test p < 0.00006). The results found in this study reinforce previous work which suggests that there is an asymmetry in neural drive that exists in both left- and right-handed individuals. However, the results show that the non-dominant motor hemisphere displays a greater amount of excitability than the dominant, which goes against the conventional dogma. This asymmetry indicates that the non-dominant hemisphere may have a higher level of excitation or a lower level of inhibition for both groups of participants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adaptation account of mirror neurons in humans proposes that mirror systems have been selected for in evolution to facilitate social cognition. By contrast, a recent "association" account of mirror neurons in humans argues that mirror systems are not the result of a specific adaptation, but of sensorimotor learning arising from concurrent visual and motor activity. Here, we used transcranial magnetic stimulation (TMS) and electromyography (EMG) to evaluate whether visuomotor associations affect interpersonal motor resonance, a putative measure of mirror system activity. 18 participants underwent two TMS sessions exploring whether visuomotor associations established throughout one׳s lifespan, namely common movements and movements generated from one׳s own perspective, are associated with increased putative mirror system activity. Our results showed no overall difference in interpersonal motor resonance to common versus uncommon actions, or actions presented from an egocentric (self) versus an allocentric (other) perspective. We did, however, observe increased interpersonal motor resonance within the abductor digiti minimi (ADM) muscle in response to allocentric compared to egocentric movements. As the association model predicts stronger mirror system response to actions with stronger visuomotor associations, such as common movements and those presented from an egocentric perspective, our findings provide little evidence to support the association model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of a repetitive index finger flexion–extension task at maximal voluntary rate (MVR) begins to decline just a few seconds into the task and we have previously postulated that this breakdown has a central origin. To test this hypothesis, we have combined two objectives; to determine whether motor practice can lessen the performance deterioration in an MVR task, and whether further gains can be achieved with a transcranial magnetic stimulation (TMS) protocol that increases corticomotor excitability (CME). Eleven right-handed subjects participated in a randomized crossover study design that consisted of a 15-min interventional TMS at I-wave periodicity (ITMS) and single-pulsed Sham intervention prior to six 10-s practice sets of a repetitive finger flexion–extension task at MVR. Motor-evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle. The starting movement rate, and the percentage decline in rate by the end of the MVR were quantitated. Training of the MVR task improved the sustainability of the task by reducing the decline in movement rate. CME increased steadily after each training bout, and this increase was maintained up to 20 min after the last bout. ITMS further increased CME, and was associated with an increase in both the starting rate of the MVR task and its sustainability, when compared to Sham. The results implicate central motor processes in the performance and sustainability of the MVR task, and indicate that MVR kinematics can improve with short-term training and with non-invasive neuro-modulation.