849 resultados para Magnesium silicates
Resumo:
BACKGROUND To date, the use of proton pump inhibitors (PPIs) has been associated with a low risk of hypomagnesaemia and associated adverse outcomes. We hypothesised that a better risk estimate could be derived from a large cohort of outpatients admitted to a tertiary emergency department (ED). METHODS A cross-sectional study was performed in 5118 patients who had measurements of serum magnesium taken on admission to a large tertiary care ED between January 2009 and December 2010. Hypomagnesaemia was defined as a serum magnesium concentration < 0.75 mmol/l. Demographical data, serum electrolyte values, data on medication, comorbidities and outcome with regard to length of hospital stay and mortality were analysed. RESULTS Serum magnesium was normally distributed where upon 1246 patients (24%) were hypomagnesaemic. These patients had a higher prevalence of out-of-hospital PPI use and diuretic use when compared with patients with magnesium levels > 0.75 mmol/l (both p < 0.0001). In multivariable regression analyses adjusted for PPIs, diuretics, renal function and the Charlson comorbidity index score, the association between use of PPIs and risk for hypomagnesaemia remained significant (OR = 2.1; 95% CI: 1.54-2.85). While mortality was not directly related to low magnesium levels (p = 0.67), the length of hospitalisation was prolonged in these patients even after adjustment for underlying comorbid conditions (p < 0.0001). CONCLUSION Use of PPIs predisposes patients to hypomagnesaemia and such to prolonged hospitalisation irrespective of the underlying morbidity, posing a critical concern.
Resumo:
Natural deformation in carbonate mylonites bearing sheet silicates occurs via a complex interaction of granular flow and solution transfer processes and involves continuous cycles of dissolution, grain boundary diffusion, nucleation and growth. In this way, new sheet silicates (a) nucleate within voids formed by grain boundary sliding of calcite grains. (b) grow, and (c) rotate towards the shear plane. As a consequence, small mica grains show a wide range of orientations with respect to the shear plane, but moderate to large grains are subparallel both to each other and to the shear plane. Increases of average grain sizes with increasing temperature of sheet silicates in mica-rich layers is more pronounced than in mica-poor layers. In the calcitic matrix however, sheet silicates can only grow via solution-precipitation and mass transfer processes. Therefore, the observed grain size variability indicates drastic differences in mass transfer behavior between the individual layers, which might be related to differences in the fluid flux. Based on these observations, a conceptual model for the microfabric evolution in sheet silicate bearing mylonites is presented. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70°C) and pressure (10-⁵mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS–NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.
Resumo:
The aim of this blinded, randomised, prospective clinical trial was to determine whether the addition of magnesium sulphate to spinally-administered ropivacaine would improve peri-operative analgesia without impairing motor function in dogs undergoing orthopaedic surgery. Twenty client-owned dogs undergoing tibial plateau levelling osteotomy were randomly assigned to one of two treatment groups: group C (control, receiving hyperbaric ropivacaine by the spinal route) or group M (magnesium, receiving a hyperbaric combination of magnesium sulphate and ropivacaine by the spinal route). During surgery, changes in physiological variables above baseline were used to evaluate nociception. Arterial blood was collected before and after spinal injection, at four time points, to monitor plasma magnesium concentrations. Post-operatively, pain was assessed with a modified Sammarco pain score, a Glasgow pain scale and a visual analogue scale, while motor function was evaluated with a modified Tarlov scale. Assessments were performed at recovery and 1, 2 and 3 h thereafter. Fentanyl and buprenorphine were administered as rescue analgesics in the intra- and post-operative periods, respectively. Plasma magnesium concentrations did not increase after spinal injection compared to baseline. Group M required less intra-operative fentanyl, had lower Glasgow pain scores and experienced analgesia of longer duration than group C (527.0 ± 341.0 min vs. 176.0 ± 109.0 min). However, in group M the motor block was significantly longer, which limits the usefulness of magnesium for spinal analgesia at the investigated dose. Further research is needed to determine a clinically effective dose with shorter duration of motor block for magnesium used as an additive to spinal analgesic agents.
Resumo:
In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and interacting indirect effects of essential elements on tropical tree seedling growth presents a considerable challenge due the complex nexus of causes involved.
Resumo:
Biodegradable magnesium plate/screw osteosynthesis systems were implanted on the frontal bone of adult miniature pigs. The chosen implant geometries were based on existing titanium systems used for the treatment of facial fractures. The aim of this study was to evaluate the in vivo degradation and tissue response of the magnesium alloy WE43 with and without a plasma electrolytic surface coating. Of 14 animals, 6 received magnesium implants with surface modification (coated), 6 without surface modification (uncoated), and 2 titanium implants. Radiological examination of the skull was performed at 1, 4, and 8 weeks post-implantation. After euthanasia at 12 and 24 weeks, X-ray, computed tomography, and microfocus computed tomography analyses and histological and histomorphological examinations of the bone/implant blocks were performed. The results showed a good tolerance of the plate/screw system without wound healing disturbance. In the radiological examination, gas pocket formation was found mainly around the uncoated plates 4 weeks after surgery. The micro-CT and histological analyses showed significantly lower corrosion rates and increased bone density and bone implant contact area around the coated screws compared to the uncoated screws at both endpoints. This study shows promising results for the further development of coated magnesium implants for the osteosynthesis of the facial skeleton.
Resumo:
BACKGROUND The metabolism of sodium, potassium, and chloride and the acid-base balance are sometimes altered in cystic fibrosis. Textbooks and reviews only marginally address the homeostasis of magnesium in cystic fibrosis. METHODS We performed a search of the Medical Subject Headings terms (cystic fibrosis OR mucoviscidosis) AND (magnesium OR hypomagnes[a]emia) in the US National Library of Medicine and Excerpta Medica databases. RESULTS We identified 25 reports dealing with magnesium and cystic fibrosis. The results of the review may be summarized as follows. First, hypomagnesemia affects more than half of the cystic fibrosis patients with advanced disease; second, magnesemia, which is normally age-independent, relevantly decreases with age in cystic fibrosis; third, aminoglycoside antimicrobials frequently induce both acute and chronic renal magnesium-wasting; fourth, sweat magnesium concentration was normal in cystic fibrosis patients; fifth, limited data suggest the existence of an impaired intestinal magnesium balance. Finally, stimulating observations suggest that magnesium supplements might achieve an improvement in respiratory muscle strength and mucolytic activity of both recombinant and endogenous deoxyribonuclease. CONCLUSIONS The first comprehensive review of the literature confirms that, despite being one of the most prevalent minerals in the body, the importance of magnesium in cystic fibrosis is largely overlooked. In these patients, hypomagnesemia should be sought once a year. Furthermore, the potential of supplementation with this cation deserves more attention.
Resumo:
The widespread occurrence of microbialites in the last deglacial reef frameworks (16-6 Ka BP) implies that the accurate study of their development patterns is of prime importance to unravel the evolution of reef architecture through time and to reconstruct the reef response to sea-level variations and environmental changes. The present study is based on the sedimentological and chronological analysis (14C AMS dating) of drill cores obtained during the IODP Expedition #310 "Tahiti Sea Level" on the successive terraces which typify the modern reef slopes from Tahiti. It provides a comprehensive data base to investigate the microbialite growth patterns (i.e. growth rates and habitats), to analyze their roles in reef frameworks and to reconstruct the evolution of the reef framework architecture during sea-level rise. The last deglacial reefs from Tahiti are composed of two distinctive biological communities: (1) the coralgal communities including seven assemblages characterized by various growth forms (branching, robust branching, massive, tabular and encrusting) that form the initial frameworks and (2) the microbial communities developed in the primary cavities of those frameworks, a few meters (1.5 to 6 m) below the living coral reef surface, where they heavily encrusted the coralgal assemblages to form microbialite crusts. The dating results demonstrate the occurrence of two distinctive generations of microbialites: the "reefal microbialites" which developed a few hundred years after coralgal communities in shallow-water environments, whereas the "slope microbialites" grew a few thousands of years later in significantly deeper water conditions after the demise of coralgal communities. The development of microbialites was controlled by the volume and the shape of the primary cavities of the initial reef frameworks determined by the morphology and the packing of coral colonies. The most widespread microbialite development occurred in frameworks dominated by branching, thin encrusting, tabular and robust branching coral colonies which built loose and open frameworks typified by a high porosity (> 50%). In contrast, their growth was minimal in compact coral frameworks formed by massive and thick encrusting corals where primary cavities yielded a low porosity (~ 30%) and could not host a significant microbialite expansion.
Resumo:
Distribution, size, mineral, and chemical compositions of ferromanganese micronodules (FMMNs) and chemical composition of host sediments were examined in a series of red clay samples with ages from Eocene to the present at Ocean Drilling Program Leg 199, Site 1216, south of the Molokai Fracture Zone in the Central Pacific Basin. The number of FMMNs changed drastically throughout the 40-m-long red clay intervals. FMMNs are abundant in the upper 9 m of core, decrease between 9 and 25 meters below seafloor (mbsf) with depth, and are very rare from 30 to 40 mbsf. Chemical composition of FMMNs showed high Mn/Fe ratios and Ni and Cu contents and a distinct positive Ce anomaly because of the existence of buserite. This suggests that FMMNs in the red clay from 25 mbsf to the top of the cored interval were deposited continuously in an oxic diagenetic bottom environment. The red clay below 30 mbsf with higher Mn contents contains few FMMNs but abundant tiny Mn particles within brown silicates coated by Fe (oxy-hydro)oxides. This indicates that the mode of manganese deposition changed between 25 and 30 mbsf.
Resumo:
We use a multiproxy approach to monitor changes in the vertical profile of the Indonesian Throughflow as well as monsoonal wind and precipitation patterns in the Timor Sea on glacial-interglacial, precessional, and suborbital timescales. We focus on an interval of extreme climate change and sea level variation: marine isotope (MIS) 6 to MIS 5e. Paleoproductivity fluctuations in the Timor Sea follow a precessional beat related to the intensity of the Australian (NW) monsoon. Paired Mg/Ca and d18O measurements of surface- and thermocline-dwelling planktonic foraminifers (G. ruber and P. obliquiloculata) indicate an increase of >4°C in both surface and thermocline water temperatures during Termination II. Tropical sea surface temperature changed synchronously with ice volume (benthic d18O) during deglaciation, implying a direct coupling of high- and low-latitude climate via atmospheric and/or upper ocean circulation. Substantial cooling and freshening of thermocline waters occurred toward the end of Termination II and during MIS 5e, indicating a change in the vertical profile of the Indonesian Throughflow from surface- to thermocline-dominated flow.