947 resultados para Macrophage inhibition factor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constitutive activation of nuclear factor (NF)-kappa B is linked with the intrinsic resistance of androgen-independent prostate cancer (AIPC) to cytotoxic chemotherapy. Interleukin-8 (CXCL8) is a transcriptional target of NF-kappa B whose expression is elevated in AIPC. This study sought to determine the significance of CXCL8 signaling in regulating the response of AIPC cells to oxaliplatin, a drug whose activity is reportedly sensitive to NF-kappa B activity. Administration of oxaliplatin to PC3 and DU145 cells increased NF-kappa B activity, promoting antiapoptotic gene transcription. In addition, oxaliplatin increased the transcription and secretion of CXCL8 and the related CXC-chemokine CXCL1 and increased the transcription and expression of CXC-chemokine receptors, especially CXC-chemokine receptor (CXCR) 2, which transduces the biological effects of CXCL8 and CXCL1. Stimulation of AIPC cells with CXCL8 potentiated NF-kappa B activation in AIPC cells, increasing the transcription and expression of NF-kappa B-regulated antiapoptotic genes of the Bcl-2 and IAP families. Coadministration of a CXCR2-selective antagonist, AZ10397767 (Bioorg Med Chem Lett 18:798-803, 2008), attenuated oxaliplatin-induced NF-kappa B activation, increased oxaliplatin cytotoxicity, and potentiated oxaliplatin-induced apoptosis in AIPC cells. Pharmacological inhibition of NF-kappa B or RNA interference-mediated suppression of Bcl-2 and survivin was also shown to sensitize AIPC cells to oxaliplatin. Our results further support NF-kappa B activity as an important determinant of cancer cell sensitivity to oxaliplatin and identify the induction of autocrine CXCR2 signaling as a novel mode of resistance to this drug.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Death receptors can directly (type I cells) or indirectly induce apoptosis by activating mitochondrial-regulated apoptosis (type II cells). The level of caspase 8 activation is thought to determine whether a cell is type I or II, with type II cells less efficient at activating this caspase following death receptor activation. FLICE-inhibitory protein (FLIP) blocks death receptor-mediated apoptosis by inhibiting caspase 8 activation; therefore, we assessed whether silencing FLIP could convert type II cells into type I. FLIP silencing-induced caspase 8 activation in Bax wild-type and null HCT116 colorectal cancer cells; however, complete caspase 3 processing and apoptosis were only observed in Bax wild-type cells. Bax-null cells were also more resistant to chemotherapy and tumor necrosis factor-related apoptosis inducing ligand and, unlike the Bax wild-type cells, were not sensitized to these agents by FLIP silencing. Further analyses indicated that release of second mitochondrial activator of caspases from mitochondria and subsequent inhibition of X-linked inhibitor of apoptosis protein (XIAP) was required to induce full caspase 3 processing and apoptosis following FLIP silencing. These results indicate that silencing FLIP does not necessarily bypass the requirement for mitochondrial involvement in type II cells. Furthermore, targeting FLIP and XIAP may represent a therapeutic strategy for the treatment of colorectal tumors with defects in mitochondrial-regulated apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously showed inhibition of Kir2 inward rectifier K+ channels expressed in Xenopus oocytes by the mitochondrial agents carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and sodium azide. Mutagenesis studies suggested that FCCP may act via phosphatidylinositol 4,5-bisphosphate (PIP2) depletion. This mechanism could be reversible in intact cells but not in excised membrane patches which preclude PIP2 regeneration. This prediction was tested by investigating the reversibility of the inhibition of Kir2.2 by FCCP in intact cells and excised patches. We also investigated the effect of FCCP on Kir2.2 expressed in human embryonic kidney (HEK) cells. Kir2.2 current, expressed in Xenopus oocytes, increased in inside-out patches from FCCP-treated and untreated oocytes. The fraction of total current that increased was 0.79?±?0.05 in control and 0.89?±?0.03 in 10 µM FCCP-treated (P?>?.05). Following “run-up,” Kir2.2 current was re-inhibited by “cramming” inside-out patches into oocytes. Therefore, run-up reflected not reversal of inhibition by FCCP, but washout of an endogenous inhibitor. Kir2.2 current recovered in intact oocytes within 26.5 h of FCCP removal. Injection of oocytes with 0.1 U apyrase completely depleted ATP (P?<?.001) but did not inhibit Kir2.2 and inhibited Kir2.1 by 35% (P?<?.05). FCCP only partially reduced [ATP] (P?<?.001), despite inhibiting Kir2.2 by 75% (P?<?.01) but not Kir2.1. FCCP inhibited Kir2.2 expressed in HEK cells. The recovery of Kir2.2 from inhibition by FCCP requires intracellular components, but direct depletion of ATP does not reproduce the differential inhibitory effect of FCCP. Inhibition of Kir2.2 by FCCP is not unique to Xenopus oocytes. J. Cell. Physiol. 219: 8–13, 2009. © 2008 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application.

Experimental Design: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using “mismatch” following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition.

Results: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect.

Conclusion: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breakdown of the inner blood-retinal barrier (iBRB) occurs early in diabetes and is central to the development of sight-threatening diabetic macular edema (DME) as retinopathy progresses. In the current study, we examined how advanced glycation end products (AGEs) forming early in diabetes could modulate vasopermeability factor expression in the diabetic retina and alter inter-endothelial cell tight junction (TJ) integrity leading to iBRB dysfunction. We also investigated the potential for an AGE inhibitor to prevent this acute pathology and examined a role of the AGE-binding protein galectin-3 (Gal-3) in AGE-mediated cell retinal pathophysiology. Diabetes was induced in C57/BL6 wild-type (WT) mice and in Gal-3(-/-) transgenic mice. Blood glucose was monitored and AGE levels were quantified by ELISA and immunohistochemistry. The diabetic groups were subdivided, and one group was treated with the AGE-inhibitor pyridoxamine (PM) while separate groups of WT and Gal-3(-/-) mice were maintained as nondiabetic controls. iBRB integrity was assessed by Evans blue assay alongside visualisation of TJ protein complexes via occludin-1 immunolocalization in retinal flat mounts. Retinal expression levels of the vasopermeability factor VEGF were quantified using real-time RT-PCR and ELISA. WT diabetic mice showed significant AGE -immunoreactivity in the retinal microvasculature and also showed significant iBRB breakdown (P < .005). These diabetics had higher VEGF mRNA and protein expression in comparison to controls (P < .01). PM-treated diabetics had normal iBRB function and significantly reduced diabetes-mediated VEGF expression. Diabetic retinal vessels showed disrupted TJ integrity when compared to controls, while PM-treated diabetics demonstrated near-normal configuration. Gal-3(-/-) mice showed significantly less diabetes-mediated iBRB dysfunction, junctional disruption, and VEGF expression changes than their WT counterparts. The data suggests an AGE-mediated disruption of iBRB via upregulation of VEGF in the diabetic retina, possibly modulating disruption of TJ integrity, even after acute diabetes. Prevention of AGE formation or genetic deletion of Gal-3 can effectively prevent these acute diabetic retinopathy changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oncogenic mutations in Kras occur in 40% to 45% of patients with advanced colorectal cancer (CRC). We have previously shown that chemotherapy acutely activates ADAM17, resulting in growth factor shedding, growth factor receptor activation, and drug resistance in CRC tumors. In this study, we examined the role of mutant Kras in regulating growth factor shedding and ADAM17 activity, using isogenic Kras mutant (MT) and wild-type (WT) HCT116 CRC cells. Significantly higher levels of TGF-a and VEGF were shed from KrasMT HCT116 cells, both basally and following chemotherapy treatment, and this correlated with increased pErk (phosphorylated extracellular signal regulated kinase)1/2 levels and ADAM17 activity. Inhibition of Kras, MEK (MAP/ERK kinase)1/2, or Erk1/2 inhibition abrogated chemotherapy-induced ADAM17 activity and TGF-a shedding. Moreover, we found that these effects were not drug or cell line specific. In addition, MEK1/2 inhibition in KrasMT xenografts resulted in significant decreases in ADAM17 activity and growth factor shedding in vivo, which correlated with dramatically attenuated tumor growth. Furthermore, we found that MEK1/2 inhibition significantly induced apoptosis both alone and when combined with chemotherapy in KrasMT cells. Importantly, we found that sensitivity to MEK1/2 inhibition was ADAM17 dependent in vitro and in vivo. Collectively, our findings indicate that oncogenic Kras regulates ADAM17 activity and thereby growth factor ligand shedding in a MEK1/2/Erk1/2-dependent manner and that KrasMT CRC tumors are vulnerable to MEK1/2 inhibitors, at least in part, due to their dependency on ADAM17 activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Atherosclerosis, which occurs prematurely in individuals with diabetes, incorporates vascular smooth muscle cell (VSMC) chemotaxis. Glucose, through protein kinase C-beta(II) signalling, increases chemotaxis to low concentrations of platelet-derived growth factor (PDGF)-BB. In VSMC, a biphasic response in PDGF-beta receptor (PDGF-betaR) level occurs as PDGF-BB concentrations increase. The purpose of this study was to determine whether increased concentrations of PDGF-BB and raised glucose level had a modulatory effect on the mitogen-activated protein kinase/extracellular-regulated protein kinase pathway, control of PDGF-betaR level and chemotaxis.

METHODS: Cultured aortic VSMC, exposed to normal glucose (NG) (5 mmol/l) or high glucose (HG) (25 mmol/l) in the presence of PDGF-BB, were assessed for migration (chemotaxis chamber) or else extracted and immunoblotted.

RESULTS: At concentrations of PDGF-BB <540 pmol/l, HG caused an increase in the level of PDGF-betaR in VSMC (immunoblotting) versus NG, an effect that was abrogated by inhibition of aldose reductase or protein kinase C-beta(II). At higher concentrations of PDGF-BB (>540 pmol/l) in HG, receptor level was reduced but in the presence of aldose reductase or protein kinase C-beta(II) inhibitors the receptor levels increased. It is known that phosphatases may be activated at high concentrations of growth factors. At high concentrations of PDGF-BB, the protein phosphatase (PP)2A inhibitor, endothall, caused an increase in PDGF-betaR levels and a loss of biphasicity in receptor levels in HG. At higher concentrations of PDGF-BB in HG, the chemoattractant effect of PDGF-BB was lost (chemotaxis chamber). Under these conditions inhibition of PP2A was associated with a restoration of chemotaxis to high concentrations of PDGF-BB.

CONCLUSION/INTERPRETATION: The biphasic response in PDGF-betaR level and in chemotaxis to PDGF-BB in HG is due to PP2A activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas elastase (LasB), a metalloprotease virulence factor, is known to play a pivotal role in pseudomonal infection. LasB is secreted at the site of infection, where it exerts a proteolytic action that spans from broad tissue destruction to subtle action on components of the host immune system. The former enhances invasiveness by liberating nutrients for continued growth, while the latter exerts an immunomodulatory effect, manipulating the normal immune response. In addition to the extracellular effects of secreted LasB, it also acts within the bacterial cell to trigger the intracellular pathway that initiates growth as a bacterial bio?lm. The key role of LasB in pseudomonal virulence makes it a potential target for the development of an inhibitor as an antimicrobial agent. The concept of inhibition of virulence is a recently established antimicrobial strategy, and such agents have been termed “second-generation” antibiotics. This approach holds promise in that it seeks to attenuate virulence processes without bactericidal action and, hence, without selection pressure for the emergence of resistant strains. A potent inhibitor of LasB,N-mercaptoacetyl-Phe-Tyr-amide (Ki 41 nM) has been developed, and its ability to block these virulence processes has been assessed. It has been demonstrated that thes compound can completely block the action of LasB on protein targets that are instrumental in bio?lm formation and immunomodulation. The novel LasB inhibitor has also been employed in bacterial-cell-based assays, to reduce the growth of pseudomonal bio?lms, and to eradicate bio?lm completely when used in combination with conventional antibiotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)-induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1-induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The erythroleukaemic cell line TF-1, infected with either the pBabe neo retrovirus or the retrovirus bearing the human erythropoietin (hEpo) gene, developed three growth factor-independent clones. Erythropoietin (Epo), interleukin-3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) accelerated the proliferation of these clones. Autonomous growth of the clones was independent of Epo because it was not altered by Epo anti-sense oligonucleotides, nor was Epo detectable in culture supernatants. Cells from the mutant clones could not be induced by Epo to express glycophorin A and haemoglobin synthesis was markedly reduced. Haemin reversed the block in Epo-induced haemoglobin synthesis. Acquisition of growth factor-independence appears to be linked with the selective loss of differentiation capacity. These cells may provide a useful model for the study of the mechanisms involved in leukaemic transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the influence of interventions on self-interactions in a spatial Prisoner's Dilemma on a two-dimensional grid with periodic boundary conditions and synchronous updating of the dynamics. We investigate two different types of self-interaction modifications. The first type (FSIP) is deterministic, effecting each self-interaction of a player by a constant factor, whereas the second type (PSIP) performs a probabilistic interventions. Both types of interventions lead to a reduction of the payoff of the players and, hence, represent inhibiting effects. We find that a constant but moderate reduction of self-interactions has a very beneficial effect on the evolution of cooperators in the population, whereas probabilistic interventions on self-interactions are in general counter productive for the coexistence of the two different strategies. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear factor-kappaB (NF-kappaB) has been implicated in a number of malignancies and has been suggested to be a potential molecular target in the treatment of leukaemia. This study demonstrated the constitutive activation of NF-kappaB in human myeloid blasts and a clear correlation between NF-kappaB expression and in vitro cytoprotection. High NF-kappaB expression was found in many of the poor prognostic acute myeloid leukaemia (AML) subtypes, such as French-American-British classification M0 and M7, and the poor cytogenetic risk group. The in vitro effects of LC-1, a novel dimethylamino-parthenolide analogue, were assessed in 62 primary untreated AML samples. LC-1 was found to be cytotoxic to AML cells in a dose-dependent manner, mediated through the induction of apoptosis. The median drug concentration necessary to kill 50% of the cells was 4.5 micromol/l for AML cells, compared with 12.8 micromol/l for normal marrow cells. LC-1 was shown to reduce the five individual human NF-kappaB Rel proteins in a dose-dependent manner. The subsequent inhibition of many NF-kappaB-regulated cytokines was also demonstrated. Importantly, sensitivity to LC-1 was correlated with the basal NF-kappaB activity. Consequently, LC-1 treatment provides a proof of principle for the use of NF-kappaB inhibitors in the treatment of AML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strains of the Burkholderia cepacia complex have emerged as a serious threat to patients with cystic fibrosis due to their ability to infect the lung and cause, in some patients, a necrotizing pneumonia that is often lethal. It has recently been shown that several strains of the B. cepacia complex can escape intracellular killing by free-living amoebae following phagocytosis. In this work, the ability of two B. cepacia complex strains to resist killing by macrophages was explored. Using fluorescence microscopy, electron microscopy and a modified version of the gentamicin-protection assay, we demonstrate that B. cepacia CEP021 (genomovar VI), and Burkholderia vietnamiensis (previously B. cepacia genomovar V) CEP040 can survive in PU5-1.8 murine macrophages for a period of at least 5 d without significant bacterial replication. Furthermore, bacterial entry into macrophages stimulated production of tumour necrosis factor and primed them to release toxic oxygen radicals following treatment with phorbol myristoyl acetate. These effects were probably caused by bacterial LPS, as they were blocked by polymyxin B. Infected macrophages primed with interferon gamma produced less nitric oxide than interferon-gamma-primed uninfected cells. We propose that the ability of B. cepacia to resist intracellular killing by phagocytic cells may play a role in the pathogenesis of cystic fibrosis lung infection. Our data are consistent with a model where repeated cycles of phagocytosis and cellular activation without bacterial killing may promote a deleterious inflammatory response causing tissue destruction and decay of lung function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connective tissue growth factor [CTGF]/CCN2 is a prototypic member of the CCN family of regulatory proteins. CTGF expression is up-regulated in a number of fibrotic diseases, including diabetic nephropathy, where it is believed to act as a downstream mediator of TGF-beta function; however, the exact mechanisms whereby CTGF mediates its effects remain unclear. Here, we describe the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The addition of CTGF to primary mesangial cells induced cell migration and cytoskeletal rearrangement but had no effect on cell proliferation. Cytoskeletal rearrangement was associated with a loss of focal adhesions, involving tyrosine dephosphorylation of focal adhesion kinase and paxillin, increased activity of the protein tyrosine phosphatase SHP-2, with a concomitant decrease in RhoA and Rac1 activity. Conversely, Cdc42 activity was increased by CTGF. These functional responses were associated with the phosphorylation and translocation of protein kinase C-zeta to the leading edge of migrating cells. Inhibition of CTGF-induced protein kinase C-zeta activity with a myristolated PKC-zeta inhibitor prevented cell migration. Moreover, transient transfection of human mesangial cells with a PKC-zeta kinase inactive mutant (dominant negative) expression vector also led to a decrease in CTGF-induced migration compared with wild-type. Furthermore, CTGF stimulated phosphorylation and activation of GSK-3beta. These data highlight for the first time an integrated mechanism whereby CTGF regulates cell migration through facilitative actin cytoskeleton disassembly, which is mediated by dephosphorylation of focal adhesion kinase and paxillin, loss of RhoA activity, activation of Cdc42, and phosphorylation of PKC-zeta and GSK-3beta. These changes indicate that the initial stages of CTGF mediated mesangial cell migration are similar to those involved in the process of cell polarization. These findings begin to shed mechanistic light on the renal diabetic milieu, where increased CTGF expression in the glomerulus contributes to cellular dysfunction.