919 resultados para MULTI-ELEMENT ANALYSIS
Resumo:
"Physics and Math. TID-4500 (15th Ed.)"--Title page.
Resumo:
"Final report."
Resumo:
Thirty-nine trace elements of the Song-Yuan period (960-1368 AD) porcelain bodies from Cizhou, Jizhou and Longquanwu kilns were analyzed with ICP-MS, a technique rarely used in Chinese archaeometry, to investigate its potential application in such studies. Trace element compositions clearly reflect the distinctive raw materials and their mineralogy at the three kilns and allow their products to be distinguished. Significant chemical variations are also observed between Yuan and Song-Jing dynasties samples from Cizhou as well as fine and coarse porcelain bodies from Longquanwu. In Cizhou, porcelains of better quality which imitate the famous Ding kiln have trace element features distinctive from ordinary Cizhou products, that indicates geochemically distinctive raw materials were used and which possibly also underwent extra refining prior to use. The distinct trace element features of different kilns and the various types of porcelains from an individual kiln can be interpreted from a geochemical perspective. ICP-MS can provide a large amount of valuable information about ancient Chinese ceramics as it is capable of analyzing >40 elements with a typical of precision < 2%.
Finite element analysis of fault bend influence on stick-slip instability along an intra-plate fault
Resumo:
Earthquakes have been recognized as resulting from stick-slip frictional instabilities along the faults between deformable rocks. A three-dimensional finite-element code for modeling the nonlinear frictional contact behaviors between deformable bodies with the node-to-point contact element strategy has been developed and applied here to investigate the fault geometry influence on the nucleation and development process of the stick-slip instability along an intra-plate fault through a typical fault bend model, which has a pre-cut fault that is artificially bent by an angle of 5.6degrees at the fault center. The numerical results demonstrate that the geometry of the fault significantly affects nucleation, termination and restart of the stick-slip instability along the intra-plate fault, and all these instability phenomena can be well simulated using the current finite-element algorithm.
Resumo:
The mechanical behavior of the vertebrate skull is often modeled using free-body analysis of simple geometric structures and, more recently, finite-element (FE) analysis. In this study, we compare experimentally collected in vivo bone strain orientations and magnitudes from the cranium of the American alligator with those extrapolated from a beam model and extracted from an FE model. The strain magnitudes predicted from beam and FE skull models bear little similarity to relative and absolute strain magnitudes recorded during in vivo biting experiments. However, quantitative differences between principal strain orientations extracted from the FE skull model and recorded during the in vivo experiments were smaller, and both generally matched expectations from the beam model. The differences in strain magnitude between the data sets may be attributable to the level of resolution of the models, the material properties used in the FE model, and the loading conditions (i.e., external forces and constraints). This study indicates that FE models and modeling of skulls as simple engineering structures may give a preliminary idea of how these structures are loaded, but whenever possible, modeling results should be verified with either in vitro or preferably in vivo testing, especially if precise knowledge of strain magnitudes is desired. (c) 2005 Wiley-Liss, Inc.
Resumo:
Bodies of Ding kiln white porcelains and their imitations from Guantai and Jiexiu kilns of the Chinese Song dynasty (960-1279 AD) were analysed for 40 trace elements by inductively coupled plasma mass spectrometry (ICP-MS). Numerous trace element compositions and ratios allow these visually similar products to be distinguished, and a Ding-style shard of uncertain origin is identified as a likely genuine Ding product. In Jiexiu kiln, Ding-style products have trace element features distinctive from blackwares of an inferior quality intended for the lower end market. Based on geochemical behaviour of these trace elements, we propose that geochemically distinctive raw materials were used for Ding-style products of a higher quality, which possibly also underwent purification by levigation prior to use. Capable of analysing over 40 elements with a typical long term precision of < 2%, this high precision ICP-MS method proves to be very powerful for grouping and characterising archaeological ceramics. Combined with geochemical interpretation, it can provide insights into the raw materials and techniques used by ancient potters. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Finite element analysis is a useful tool in understanding how the accommodation system of the eye works. Further to simpler FEA models that have been used hitherto, this paper describes a sensitivity study which aims to understand which parameters of the crystalline lens are key to developing an accurate model of the accommodation system. A number of lens models were created, allowing the mechanical properties, internal structure and outer geometry to be varied. These models were then spun about their axes, and the deformations determined. The results showed the mechanical properties are the critical parameters, with the internal structure secondary. Further research is needed to fully understand how the internal structure and properties interact to affect lens deformation.