998 resultados para MOTOR PROTEINS
Resumo:
Motor unit action potentials (MUAPs) evoked by repetitive, low-intensity transcranial magnetic stimulation can be modeled as a Poisson process. A mathematical consequence of such a model is that the ratio of the variance to the mean of the amplitudes of motor evoked potentials (MEPs) should provide an estimate of the mean size of the individual MUAPs that summate to generate each MEP. We found that this is, in fact, the case. Our finding thus supports the use of the Poisson distribution to model MEP generation and indicates that this model enables characterization of the motor unit population that contributes to near-threshold MEPs. Muscle Nerve 42: 825-828, 2010
Resumo:
There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
OBJECTIVE: This study was conducted to investigate the success rate of using the facial motor evoked potential (FMEP) of orbicularis oculi and oris muscles for facial nerve function monitoring with use of a stepwise protocol, and its usefulness in predicting facial nerve outcome during cerebellopontine angle (CPA) surgeries. METHODS: FMEPs were recorded intraoperatively from 60 patients undergoing CPA surgeries. Transcranial electrocortical stimulation (TES) was performed using corkscrew electrodes positioned at hemispheric montage (C3/C4 and CZ). The contralateral abductor pollicis brevis muscle was used as the control response. Stimulation was always applied contralaterally to the affected side using 1, 3, or 5 rectangular pulses ranging from 200 to 600 V with 50 mu s of pulse duration and an interstimulus interval of 2 ms. Facial potentials were recorded from needles placed in the orbicularis oculi and oris muscles. RESULTS: FMEP from the orbicularis oris and oculi muscles could be reliably monitored in 86.7% and 85% of the patients, respectively. The immediate postoperative facial function correlated significantly with the FMEP ratio in the orbicularis oculi muscle at 80% amplitude ratio (P =.037) and orbicularis oris muscle at 35% ratio (P =.000). FMEP loss was always related to postoperative facial paresis, although in different degrees. CONCLUSION: FMEPs can be obtained reliably by using TES with 3 to 5 train pulses. Stable intraoperative FMEPs can predict a good postoperative outcome of facial function. However, further refinements of this technique are necessary to minimize artifacts and to make this method more reliable.
Resumo:
Parkinson`s disease (PD) is considered a multisystem disorder involving dopaminergic, noradrenergic. serotoninergic. and cholinergic systems, characterized by motor and non-motor symptoms. The causes of the non-motor symptoms in PD are multifactorial and unlikely to be explained by single lesions However, several evidence link them to damage of specific brainstem nuclei Numerous brainstem nuclei are engaged in fundamental homeostatic mechanisms, including gastrointestinal regulation, pain perception, mood control, and sleep-wake cycles In addition, these nuclei are locally interconnected in a complex manner and are subject to supraspinal control. The objective of this review is to provide a better overview of the current knowledge about the consequences of the involvement of specific brainstem nuclei to the most prevalent non-motor symptoms occurring in PD The multidisciplinary efforts of research directed to these non-nigral brainstem nuclei, in addition to the topographical and chronological spread of the disease - especially in the prodromal stages of PD. are discussed (C) 2009 Elsevier B V. All rights reserved
Resumo:
Aims. To investigate the effects of using bromazepam on the relative power in alpha while performing a typing task. Bearing in mind the particularities of each brain hemisphere, our hypothesis was that measuring the relative power would allow its to investigate the effects of bromazepam oil specific areas of the cortex. More, specifically, we expected to observe different patterns of powers in sensory-motor integration, attention and activation processes. Subjects and methods. The sample was made up of 39 subjects (15 males and 24 females) with a mean age of 30 +/- 10 years. The control (placebo) and experimental (3 mg and 6 mg of bromazepam) groups were trained ill the typing task with a randomised double-blind model. Results. A three-way ANOVA and Scheffe test were used to analyse interactions between the factors condition and moment, and between condition and sector Conclusions. The doses used ill this study facilitated motor performance of the typing task. Ill this study, the use of the drug did not prevent learning of the task, but it did appear to concentrate mental effort on more restricted and specific aspects of typing. It also seemed to influence the rhythm and effectiveness of the operations performed during mechanisms related to the encoding and storage often, information. Likewise, a predominance of activity was observed in the left (dominant) frontal area in the 3 mg bromazepam group, which indicates that this close of the drug affords the subject a greater degree of directionality of cortical activity for planning and performing the task. [REV NEUROL 2009; 49: 295-9]
Resumo:
Introduction. A fundamental aspect of planning future actions is the performance and control of motor tasks. This behaviour is done through sensory-motor integration. Aim. To explain the electrophysiological mechanisms in the cortex (modifications to the alpha band) that are involved in anticipatory actions when individuals have to catch a free-falling object. Subjects and methods. The sample was made up of 20 healthy subjects of both sexes (11 males and 9 females) with ages ranging between 25 and 40 years (32.5 +/- 7.5) who were free of mental or physical diseases (previous medical history); the subjects were right-handed (Edinburgh Inventory) and were not taking any psychoactive or psychotropic substances at the time of the study. The experiment consisted in a task in which subjects had to catch freely falling objects. The experiment was made up of six blocks of 15 tests, each of which lasted 2 minutes and 30 seconds before and two seconds after each ball was dropped. Results. An interaction of the factors moment and position was only observed for the right parietooccipital cortex, in the combination of electrodes P4-O2. Conclusion. These findings suggest that the right parietooccipital cortex plays an important role in increasing expectation and swiftness in the process of preparing for a motor task.
Resumo:
Background Facial motor evoked potential (FMEP) amplitude ratio reduction at the end of the surgery has been identified as a good predictor for postoperative facial nerve outcome. We sought to investigate variations in FMEP amplitude and waveform morphology during vestibular schwannoma (VS) resection and to correlate these measures with postoperative facial function immediately after surgery and at the last follow-up. Methods Intraoperative orbicularis oculi and oris muscles FMEP data from 35 patients undergoing surgery for VS resection were collected, then analysed by surgical stage: initial, dural opening, tumour dissection (TuDis), tumour resection (TuRes) and final. Findings Immediately after surgery, postoperative facial function correlated significantly with the FMEP amplitude ratio during TuDis, TuRes and final stages in both the orbicularis oculi (p = 0.003, 0.055 and 0.028, respectively) and oris muscles (p = 0.002, 0.104 and 0.014, respectively). At the last follow-up, however, facial function correlated significantly with the FMEP amplitude ratio only during the TuDis (p = 0.005) and final (p = 0.102) stages for the orbicularis oris muscle. At both time points, postoperative facial paresis correlated significantly with FMEP waveform deterioration in orbicularis oculi during the final stage (immediate, p = 0.023; follow-up, p = 0.116) and in orbicularis oris during the TuDis, TuRes and final stages (immediate, p = 0.071, 0.000 and 0.001, respectively; follow-up, p = 0.015, 0.001 and 0.01, respectively). Conclusions FMEP amplitude ratio and waveform morphology during VS resection seem to represent independent quantitative parameters that can be used to predict postoperative facial function. Event-to-baseline FMEP monitoring is quite useful to dictate when intraoperative changes in surgical strategy are warranted to reduce the chances of facial nerve injury.
Resumo:
This in vivo study evaluated the osteogenic potential of two proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and a protein extracted from natural latex (Hevea brasiliensis, P-1), and compared their effects on bone defects when combined with a carrier or a collagen gelatin. Eighty-four (84) Wistar rats were divided into two groups, with and without the use of collagen gelatin, and each of these were divided into six treatment groups of seven animals each. The treatment groups were: (1) 5 mu g of pure rhBMP-2; (2) 5 mu g of rhBMP-2/monoolein gel; (3) pure monoolein gel; (4) 5 mu g of pure P-1; (5) 5 mu g of P-1/monoolein gel; (6) critical bone defect control. The animals were anesthetized and a 6 mm diameter critical bone defect was made in the left posterior region of the parietal bone. Animals were submitted to intracardiac perfusion after 4 weeks and the calvaria tissue was removed for histomorphometric analysis. In this experimental study, it was concluded that rhBMP-2 allowed greater new bone formation than P-1 protein and this process was more effective when the bone defect was covered with collagen gelatin (P < 0.05). Anat Rec, 293:794-801, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Culture filtrate proteins (CFP) are potential targets for tuberculosis vaccine development. We previously showed that despite the high level of gamma interferon (IFN-gamma) production elicited by homologous immunization with CFP plus CpG oligodeoxynucleotides (CFP/CpG), we did not observe protection when these mice were challenged with Mycobacterium tuberculosis. In order to use the IFN-gamma-inducing ability of CFP antigens, in this study we evaluated a prime-boost heterologous immunization based on CFP/CpG to boost Mycobacterium bovis BCG vaccination in order to find an immunization schedule that could induce protection. Heterologous BCG-CFP/CpG immunization provided significant protection against experimental tuberculosis, and this protection was sustained during the late phase of infection and was even better than that conferred by a single BCG immunization. The protection was associated with high levels of antigen-specific IFN-gamma and interleukin-17 (IL-17) and low IL-4 production. The deleterious role of IL-4 was confirmed when IL-4 knockout mice vaccinated with CFP/CpG showed consistent protection similar to that elicited by BCG-CFP/CpG heterologous immunization. These findings show that a single dose of CFP/CpG can represent a new strategy to boost the protection conferred by BCG vaccination. Moreover, different immunological parameters, such as IFN-gamma and IL-17 and tightly regulated IL-4 secretion, seem to contribute to the efficacy of this tuberculosis vaccine.
Resumo:
The sumoylation pathway is a post-translational modification of nuclear proteins widespread among several organisms. SMT3C is the main protein involved in this process and it is covalently conjugated to a diverse assortment of nuclear protein targets. To date, 3 SUMO paralogues (SMT3C, A/B) have been characterized in mammals and plants. In this work we characterized two SUMO related genes, named SMT3B and SMT3C throughout Schistosoma mansoni life cycle. The SmSMTB/C encodes for proteins sharing significant amino acid homology with SMT3. Phylogenetical analyses revealed that both SmSMT3B/C are distinct proteins. Additionally, SmSMT3B and C are expressed in cercariae, adult worms, eggs and schistosomula however SinSMT3C gene showed an expression level 7 to 9 fold higher than SmSMT3B in eggs, schistosomula and adult worms. The comparison between the SmSMT3C genomic and cDNA sequences established that the encoding sequence is interrupted by 3 introns of 70, 37 and 36 bp. Western Blot has shown SMT3 conjugates are present in nuclear and total protein fractions of adults and cercariae. Therefore our results suggest a functional sumoylation pathway, and the presence of two paralogues also suggests the specificity of substrates for SMT3 in S. mansoni. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Tick bites may trigger acute phase responses. Positive and negative acute phase proteins were measured in infested cattle genetically resistant and susceptible to ticks. During heavier infestations levels of haptoglobin increased significantly in susceptible bovines; levels of serum amyloid A increased in resistant bovines; levels of alpha-l-acid glycoprotein decreased significantly in resistant bovines; levels of transferrin decreased significantly in susceptible bovines. In conclusion, tick infestations trigger acute phase responses and enhancement of specific acute phase proteins differs according to the genetic composition of hosts. Acute phase proteins may constitute useful biological signatures for monitoring the stress induced by tick infestations. (c) 2007 Elsevier Inc. All rights reserved.