959 resultados para MODEL-PREDICTIVE CONTROL


Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the objectives of this study is to perform classification of socio-demographic components for the level of city section in City of Lisbon. In order to accomplish suitable platform for the restaurant potentiality map, the socio-demographic components were selected to produce a map of spatial clusters in accordance to restaurant suitability. Consequently, the second objective is to obtain potentiality map in terms of underestimation and overestimation in number of restaurants. To the best of our knowledge there has not been found identical methodology for the estimation of restaurant potentiality. The results were achieved with combination of SOM (Self-Organized Map) which provides a segmentation map and GAM (Generalized Additive Model) with spatial component for restaurant potentiality. Final results indicate that the highest influence in restaurant potentiality is given to tourist sites, spatial autocorrelation in terms of neighboring restaurants (spatial component), and tax value, where lower importance is given to household with 1 or 2 members and employed population, respectively. In addition, an important conclusion is that the most attractive market sites have shown no change or moderate underestimation in terms of restaurants potentiality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last decades the automotive sector has seen a technological revolution, due mainly to the more restrictive regulation, the newly introduced technologies and, as last, to the poor resources of fossil fuels remaining on Earth. Promising solution in vehicles’ propulsion are represented by alternative architectures and energy sources, for example fuel-cells and pure electric vehicles. The automotive transition to new and green vehicles is passing through the development of hybrid vehicles, that usually combine positive aspects of each technology. To fully exploit the powerful of hybrid vehicles, however, it is important to manage the powertrain’s degrees of freedom in the smartest way possible, otherwise hybridization would be worthless. To this aim, this dissertation is focused on the development of energy management strategies and predictive control functions. Such algorithms have the goal of increasing the powertrain overall efficiency and contextually increasing the driver safety. Such control algorithms have been applied to an axle-split Plug-in Hybrid Electric Vehicle with a complex architecture that allows more than one driving modes, including the pure electric one. The different energy management strategies investigated are mainly three: the vehicle baseline heuristic controller, in the following mentioned as rule-based controller, a sub-optimal controller that can include also predictive functionalities, referred to as Equivalent Consumption Minimization Strategy, and a vehicle global optimum control technique, called Dynamic Programming, also including the high-voltage battery thermal management. During this project, different modelling approaches have been applied to the powertrain, including Hardware-in-the-loop, and diverse powertrain high-level controllers have been developed and implemented, increasing at each step their complexity. It has been proven the potential of using sophisticated powertrain control techniques, and that the gainable benefits in terms of fuel economy are largely influenced by the chose energy management strategy, even considering the powerful vehicle investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fibre Reinforced Concretes are innovative composite materials whose applications are growing considerably nowadays. Being composite materials, their performance depends on the mechanical properties of both components, fibre and matrix and, above all, on the interface. The variables to account for the mechanical characterization of the material, could be proper of the material itself, i.e. fibre and concrete type, or external factors, i.e. environmental conditions. The first part of the research presented is focused on the experimental and numerical characterization of the interface properties and short term response of fibre reinforced concretes with macro-synthetic fibers. The experimental database produced represents the starting point for numerical models calibration and validation with two principal purposes: the calibration of a local constitutive law and calibration and validation of a model predictive of the whole material response. In the perspective of the design of sustainable admixtures, the optimization of the matrix of cement-based fibre reinforced composites is realized with partial substitution of the cement amount. In the second part of the research, the effect of time dependent phenomena on MSFRCs response is studied. An extended experimental campaign of creep tests is performed analysing the effect of time and temperature variations in different loading conditions. On the results achieved, a numerical model able to account for the viscoelastic nature of both concrete and reinforcement, together with the environmental conditions, is calibrated with the LDPM theory. Different type of regression models are also elaborated correlating the mechanical properties investigated, bond strength and residual flexural behaviour, regarding the short term analysis and creep coefficient on time, for the time dependent behaviour, with the variable investigated. The experimental studies carried out emphasize the several aspects influencing the material mechanical performance allowing also the identification of those properties that the numerical approach should consider in order to be reliable.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000 models were built using many combinations of analytical methods. The teams generated predictive models without knowing the biological meaning of some of the endpoints and, to mimic clinical reality, tested the models on data that had not been used for training. We found that model performance depended largely on the endpoint and team proficiency and that different approaches generated models of similar performance. The conclusions and recommendations from MAQC-II should be useful for regulatory agencies, study committees and independent investigators that evaluate methods for global gene expression analysis.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

BACKGROUND: Adrenal insufficiency is a rare and potentially lethal disease if untreated. Several clinical signs and biological markers are associated with glucocorticoid failure but the importance of these factors for diagnosing adrenal insufficiency is not known. In this study, we aimed to assess the prevalence of and the factors associated with adrenal insufficiency among patients admitted to an acute internal medicine ward. METHODS: Retrospective, case-control study including all patients with high-dose (250 μg) ACTH-stimulation tests for suspected adrenal insufficiency performed between 2008 and 2010 in an acute internal medicine ward (n = 281). Cortisol values <550 nmol/l upon ACTH-stimulation test were considered diagnostic for adrenal insufficiency. Area under the ROC curve (AROC), sensitivity, specificity, negative and positive predictive values for adrenal insufficiency were assessed for thirteen symptoms, signs and biological variables. RESULTS: 32 patients (11.4%) presented adrenal insufficiency; the others served as controls. Among all clinical and biological parameters studied, history of glucocorticoid withdrawal was the only independent factor significantly associated with patients with adrenal insufficiency (Odds Ratio: 6.71, 95% CI: 3.08 -14.62). Using a logistic regression, a model with four significant and independent variable was obtained, regrouping history of glucocorticoid withdrawal (OR 7.38, 95% CI [3.18 ; 17.11], p-value <0.001), nausea (OR 3.37, 95% CI [1.03 ; 11.00], p-value 0.044), eosinophilia (OR 17.6, 95% CI [1.02; 302.3], p-value 0.048) and hyperkalemia (OR 2.41, 95% CI [0.87; 6.69], p-value 0.092). The AROC (95% CI) was 0.75 (0.70; 0.80) for this model, with 6.3 (0.8 - 20.8) for sensitivity and 99.2 (97.1 - 99.9) for specificity. CONCLUSIONS: 11.4% of patients with suspected adrenal insufficient admitted to acute medical ward actually do present with adrenal insufficiency, defined by an abnormal response to high-dose (250 μg) ACTH-stimulation test. A history of glucocorticoid withdrawal was the strongest factor predicting the potential adrenal failure. The combination of a history of glucocorticoid withdrawal, nausea, eosinophilia and hyperkaliemia might be of interest to suspect adrenal insufficiency.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Aims: To describe the drinking patterns and their baseline predictive factors during a 12-month period after an initial evaluation for alcohol treatment. Methods CONTROL is a single-center, prospective, observational study evaluating consecutive alcohol-dependent patients. Using a curve clustering methodology based on a polynomial regression mixture model, we identified three clusters of patients with dominant alcohol use patterns described as mostly abstainers, mostly moderate drinkers and mostly heavy drinkers. Multinomial logistic regression analysis was used to identify baseline factors (socio-demographic, alcohol dependence consequences and related factors) predictive of belonging to each drinking cluster. ResultsThe sample included 143 alcohol-dependent adults (63.6% males), mean age 44.6 ± 11.8 years. The clustering method identified 47 (32.9%) mostly abstainers, 56 (39.2%) mostly moderate drinkers and 40 (28.0%) mostly heavy drinkers. Multivariate analyses indicated that mild or severe depression at baseline predicted belonging to the mostly moderate drinkers cluster during follow-up (relative risk ratio (RRR) 2.42, CI [1.02-5.73, P = 0.045] P = 0.045), while living alone (RRR 2.78, CI [1.03-7.50], P = 0.044) and reporting more alcohol-related consequences (RRR 1.03, CI [1.01-1.05], P = 0.004) predicted belonging to the mostly heavy drinkers cluster during follow-up. Conclusion In this sample, the drinking patterns of alcohol-dependent patients were predicted by baseline factors, i.e. depression, living alone or alcohol-related consequences and findings that may inform clinicians about the likely drinking patterns of their alcohol-dependent patient over the year following the initial evaluation for alcohol treatment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An automatic nonlinear predictive model-construction algorithm is introduced based on forward regression and the predicted-residual-sums-of-squares (PRESS) statistic. The proposed algorithm is based on the fundamental concept of evaluating a model's generalisation capability through crossvalidation. This is achieved by using the PRESS statistic as a cost function to optimise model structure. In particular, the proposed algorithm is developed with the aim of achieving computational efficiency, such that the computational effort, which would usually be extensive in the computation of the PRESS statistic, is reduced or minimised. The computation of PRESS is simplified by avoiding a matrix inversion through the use of the orthogonalisation procedure inherent in forward regression, and is further reduced significantly by the introduction of a forward-recursive formula. Based on the properties of the PRESS statistic, the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation. Numerical examples are used to demonstrate the efficacy of the algorithm.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

With substance abuse treatment expanding in prisons and jails, understanding how behavior change interacts with a restricted setting becomes more essential. The Transtheoretical Model (TTM) has been used to understand intentional behavior change in unrestricted settings, however, evidence indicates restrictive settings can affect the measurement and structure of the TTM constructs. The present study examined data from problem drinkers at baseline and end-of-treatment from three studies: (1) Project CARE (n = 187) recruited inmates from a large county jail; (2) Project Check-In (n = 116) recruited inmates from a state prison; (3) Project MATCH, a large multi-site alcohol study had two recruitment arms, aftercare (n = 724 pre-treatment and 650 post-treatment) and outpatient (n = 912 pre-treatment and 844 post-treatment). The analyses were conducted using cross-sectional data to test for non-invariance of measures of the TTM constructs: readiness, confidence, temptation, and processes of change (Structural Equation Modeling, SEM) across restricted and unrestricted settings. Two restricted (jail and aftercare) and one unrestricted group (outpatient) entering treatment and one restricted (prison) and two unrestricted groups (aftercare and outpatient) at end-of-treatment were contrasted. In addition TTM end-of-treatment profiles were tested as predictors of 12 month drinking outcomes (Profile Analysis). Although SEM did not indicate structural differences in the overall TTM construct model across setting types, there were factor structure differences on the confidence and temptation constructs at pre-treatment and in the factor structure of the behavioral processes at the end-of-treatment. For pre-treatment temptation and confidence, differences were found in the social situations factor loadings and in the variance for the confidence and temptation latent factors. For the end-of-treatment behavioral processes, differences across the restricted and unrestricted settings were identified in the counter-conditioning and stimulus control factor loadings. The TTM end-of-treatment profiles were not predictive of drinking outcomes in the prison sample. Both pre and post-treatment differences in structure across setting types involved constructs operationalized with behaviors that are limited for those in restricted settings. These studies suggest the TTM is a viable model for explicating addictive behavior change in restricted settings but calls for modification of subscale items that refer to specific behaviors and caution in interpreting the mean differences across setting types for problem drinkers. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper the continuous Verhulst dynamic model is used to synthesize a new distributed power control algorithm (DPCA) for use in direct sequence code division multiple access (DS-CDMA) systems. The Verhulst model was initially designed to describe the population growth of biological species under food and physical space restrictions. The discretization of the corresponding differential equation is accomplished via the Euler numeric integration (ENI) method. Analytical convergence conditions for the proposed DPCA are also established. Several properties of the proposed recursive algorithm, such as Euclidean distance from optimum vector after convergence, convergence speed, normalized mean squared error (NSE), average power consumption per user, performance under dynamics channels, and implementation complexity aspects, are analyzed through simulations. The simulation results are compared with two other DPCAs: the classic algorithm derived by Foschini and Miljanic and the sigmoidal of Uykan and Koivo. Under estimated errors conditions, the proposed DPCA exhibits smaller discrepancy from the optimum power vector solution and better convergence (under fixed and adaptive convergence factor) than the classic and sigmoidal DPCAs. (C) 2010 Elsevier GmbH. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. Although population viability analysis (PVA) is widely employed, forecasts from PVA models are rarely tested. This study in a fragmented forest in southern Australia contrasted field data on patch occupancy and abundance for the arboreal marsupial greater glider Petauroides volans with predictions from a generic spatially explicit PVA model. This work represents one of the first landscape-scale tests of its type. 2. Initially we contrasted field data from a set of eucalypt forest patches totalling 437 ha with a naive null model in which forecasts of patch occupancy were made, assuming no fragmentation effects and based simply on remnant area and measured densities derived from nearby unfragmented forest. The naive null model predicted an average total of approximately 170 greater gliders, considerably greater than the true count (n = 81). 3. Congruence was examined between field data and predictions from PVA under several metapopulation modelling scenarios. The metapopulation models performed better than the naive null model. Logistic regression showed highly significant positive relationships between predicted and actual patch occupancy for the four scenarios (P = 0.001-0.006). When the model-derived probability of patch occupancy was high (0.50-0.75, 0.75-1.00), there was greater congruence between actual patch occupancy and the predicted probability of occupancy. 4. For many patches, probability distribution functions indicated that model predictions for animal abundance in a given patch were not outside those expected by chance. However, for some patches the model either substantially over-predicted or under-predicted actual abundance. Some important processes, such as inter-patch dispersal, that influence the distribution and abundance of the greater glider may not have been adequately modelled. 5. Additional landscape-scale tests of PVA models, on a wider range of species, are required to assess further predictions made using these tools. This will help determine those taxa for which predictions are and are not accurate and give insights for improving models for applied conservation management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study we present a novel automated strategy for predicting infarct evolution, based on MR diffusion and perfusion images acquired in the acute stage of stroke. The validity of this methodology was tested on novel patient data including data acquired from an independent stroke clinic. Regions-of-interest (ROIs) defining the initial diffusion lesion and tissue with abnormal hemodynamic function as defined by the mean transit time (MTT) abnormality were automatically extracted from DWI/PI maps. Quantitative measures of cerebral blood flow (CBF) and volume (CBV) along with ratio measures defined relative to the contralateral hemisphere (r(a)CBF and r(a)CBV) were calculated for the MTT ROIs. A parametric normal classifier algorithm incorporating these measures was used to predict infarct growth. The mean r(a)CBF and r(a)CBV values for eventually infarcted MTT tissue were 0.70 +/-0.19 and 1.20 +/-0.36. For recovered tissue the mean values were 0.99 +/-0.25 and 1.87 +/-0.71, respectively. There was a significant difference between these two regions for both measures (P