942 resultados para Lung Neoplasms
Resumo:
Early diagnosis and the ability to predict the most relevant treatment option for individuals is essential to improve clinical outcomes for non-small cell lung cancer (NSCLC) patients. Adenocarcinoma (ADC), a subtype of NSCLC, is the single biggest cancer killer and therefore an urgent need to identify minimally invasive biomarkers to enable early diagnosis. Recent studies, by ourselves and others, indicate that circulating miRNA s have potential as biomarkers. Here we applied global profiling approaches in serum from patients with ADC of the lung to explore if miRNA s have potential as diagnostic biomarkers. This study involved RNA isolation from 80 sera specimens including those from ADC patients (equal numbers of stages 1, 2, 3, and 4) and age- and gender-matched controls (n = 40 each). Six hundred and sixty-seven miRNA s were co-analyzed in these specimens using TaqMan low density arrays and qPCR validation using individual miRNA s. Overall, approximately 390 and 370 miRNA s were detected in ADC and control sera, respectively. A group of 6 miRNA s, miR-30c-1* (AU C = 0.74; P < 0.002), miR-616(AU C = 0.71; P = 0.001), miR-146b-3p (AU C = 0.82; P < 0.0001), miR-566 (AU C = 0.80; P < 0.0001), miR-550 (AU C = 0.72; P = 0.0006), and miR-939 (AU C = 0.82; P < 0.0001) was found to be present at substantially higher levels in ADC compared with control sera. Conversely, miR-339-5p and miR-656 were detected at substantially lower levels in ADC sera (co-analysis resulting in AU C = 0.6; P = 0.02). Differences in miRNA profile identified support circulating miRNA s having potential as diagnostic biomarkers for ADC. More extensive studies of ADC and control serum specimens are warranted to independently validate the potential clinical relevance of these miRNA s as minimally invasive biomarkers for ADC.
Resumo:
Non-small cell lung carcinoma remains by far the leading cause of cancer-related deaths worldwide. Overexpression of FLIP, which blocks the extrinsic apoptotic pathway by inhibiting caspase-8 activation, has been identified in various cancers. We investigated FLIP and procaspase-8 expression in NSCLC and the effect of HDAC inhibitors on FLIP expression, activation of caspase-8 and drug resistance in NSCLC and normal lung cell line models. Immunohistochemical analysis of cytoplasmic and nuclear FLIP and procaspase-8 protein expression was carried out using a novel digital pathology approach. Both FLIP and procaspase-8 were found to be significantly overexpressed in tumours, and importantly, high cytoplasmic expression of FLIP significantly correlated with shorter overall survival. Treatment with HDAC inhibitors targeting HDAC1-3 downregulated FLIP expression predominantly via post-transcriptional mechanisms, and this resulted in death receptor- and caspase-8-dependent apoptosis in NSCLC cells, but not normal lung cells. In addition, HDAC inhibitors synergized with TRAIL and cisplatin in NSCLC cells in a FLIP- and caspase-8-dependent manner. Thus, FLIP and procaspase-8 are overexpressed in NSCLC, and high cytoplasmic FLIP expression is indicative of poor prognosis. Targeting high FLIP expression using HDAC1-3 selective inhibitors such as entinostat to exploit high procaspase-8 expression in NSCLC has promising therapeutic potential, particularly when used in combination with TRAIL receptor-targeted agents.
Resumo:
Purpose The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR/ErbB1), human epidermal growth factor receptor 2 (HER2/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS). Patients and Methods In this phase III study, eligible patients with stage IIIB/IV lung adenocarcinoma were screened for EGFR mutations. Mutation-positive patients were stratified by mutation type (exon 19 deletion, L858R, or other) and race (Asian or non-Asian) before two-to-one random assignment to 40 mg afatinib per day or up to six cycles of cisplatin plus pemetrexed chemotherapy at standard doses every 21 days. The primary end point was PFS by independent review. Secondary end points included tumor response, overall survival, adverse events, and patient-reported outcomes (PROs). Results A total of 1,269 patients were screened, and 345 were randomly assigned to treatment. Median PFS was 11.1 months for afatinib and 6.9 months for chemotherapy (hazard ratio [HR], 0.58; 95% CI, 0.43 to 0.78; P = .001). Median PFS among those with exon 19 deletions and L858R EGFR mutations (n = 308) was 13.6 months for afatinib and 6.9 months for chemotherapy (HR, 0.47; 95% CI, 0.34 to 0.65; P = .001). The most common treatmentrelated adverse events were diarrhea, rash/acne, and stomatitis for afatinib and nausea, fatigue, and decreased appetite for chemotherapy. PROs favored afatinib, with better control of cough, dyspnea, and pain. Conclusion Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.
Resumo:
Purpose Patient-reported symptoms and health-related quality of life (QoL) benefits were investigated in a randomized, phase III trial of afatinib or cisplatin/pemetrexed. Patients and Methods Three hundred forty-five patients with advanced epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma were randomly assigned 2:1 to afatinib 40 mg per day or up to six cycles of cisplatin/pemetrexed. Lung cancer symptoms and health-related QoL were assessed every 21 days until progression using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire C30 and Lung Cancer-13 questionnaires. Analyses of cough, dyspnea, and pain were preplanned, including percentage of patients who improved on therapy, time to deterioration of symptoms, and change in symptoms over time. Results Questionnaire compliance was high. Compared with chemotherapy, afatinib significantly delayed the time to deterioration for cough (hazard ratio [HR], 0.60; 95% CI, 0.41 to 0.87; P = .007) and dyspnea (HR, 0.68; 95% CI, 0.50 to 0.93; P = .015), but not pain (HR, 0.83; 95% CI, 0.62 to 1.10; P = .19). More patients on afatinib (64%) versus chemotherapy (50%) experienced improvements in dyspnea scores (P lt; .010). Differences in mean scores over time significantly favored afatinib over chemotherapy for cough (P lt; .001) and dyspnea (P = .001). Afatinib showed significantly better mean scores over time in global health status/QoL (P = .015) and physical (P = .001), role (P = .004), and cognitive (P lt; .007) functioning compared with chemotherapy. Fatigue and nausea were worse with chemotherapy, whereas diarrhea, dysphagia, and sore mouth were worse with afatinib (all P = .01). Conclusion In patients with lung adenocarcinoma with EGFR mutations, first-line afatinib was associated with better control of cough and dyspnea compared with chemotherapy, although diarrhea, dysphagia, and sore mouth were worse. Global health status/QoL was also improved over time with afatinib compared with chemotherapy.
Resumo:
Background Indigenous children in high-income countries have a heavy burden of bronchiectasis unrelated to cystic fibrosis. We aimed to establish whether long-term azithromycin reduced pulmonary exacerbations in Indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease. Methods Between Nov 12, 2008, and Dec 23, 2010, we enrolled Indigenous Australian, Maori, and Pacific Island children aged 1—8 years with either bronchiectasis or chronic suppurative lung disease into a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial. Eligible children had had at least one pulmonary exacerbation in the previous 12 months. Children were randomised (1:1 ratio, by computer-generated sequence with permuted block design, stratified by study site and exacerbation frequency [1—2 vs ≥3 episodes in the preceding 12 months]) to receive either azithromycin (30 mg/kg) or placebo once a week for up to 24 months. Allocation concealment was achieved by double-sealed, opaque envelopes; participants, caregivers, and study personnel were masked to assignment until after data analysis. The primary outcome was exacerbation (respiratory episodes treated with antibiotics) rate. Analysis of the primary endpoint was by intention to treat. At enrolment and at their final clinic visits, children had deep nasal swabs collected, which we analysed for antibiotic-resistant bacteria. This study is registered with the Australian New Zealand Clinical Trials Registry; ACTRN12610000383066. Findings 45 children were assigned to azithromycin and 44 to placebo. The study was stopped early for feasibility reasons on Dec 31, 2011, thus children received the intervention for 12—24 months. The mean treatment duration was 20·7 months (SD 5·7), with a total of 902 child-months in the azithromycin group and 875 child-months in the placebo group. Compared with the placebo group, children receiving azithromycin had significantly lower exacerbation rates (incidence rate ratio 0·50; 95% CI 0·35—0·71; p<0·0001). However, children in the azithromycin group developed significantly higher carriage of azithromycin-resistant bacteria (19 of 41, 46%) than those receiving placebo (four of 37, 11%; p=0·002). The most common adverse events were non-pulmonary infections (71 of 112 events in the azithromycin group vs 132 of 209 events in the placebo group) and bronchiectasis-related events (episodes or investigations; 22 of 112 events in the azithromycin group vs 48 of 209 events in the placebo group); however, study drugs were well tolerated with no serious adverse events being attributed to the intervention. Interpretation Once-weekly azithromycin for up to 24 months decreased pulmonary exacerbations in Indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease. However, this strategy was also accompanied by increased carriage of azithromycin-resistant bacteria, the clinical consequences of which are uncertain, and will need careful monitoring and further study.
Resumo:
The molecular mechanisms involved in non‑small cell lung cancer tumourigenesis are largely unknown; however, recent studies have suggested that long non-coding RNAs (lncRNAs) are likely to play a role. In this study, we used public databases to identify an mRNA-like, candidate long non-coding RNA, GHSROS (GHSR opposite strand), transcribed from the antisense strand of the ghrelin receptor gene, growth hormone secretagogue receptor (GHSR). Quantitative real-time RT-PCR revealed higher expression of GHSROS in lung cancer tissue compared to adjacent, non-tumour lung tissue. In common with many long non-coding RNAs, GHSROS is 5' capped and 3' polyadenylated (mRNA-like), lacks an extensive open reading frame and harbours a transposable element. Engineered overexpression of GHSROS stimulated cell migration in the A549 and NCI-H1299 non-small cell lung cancer cell lines, but suppressed cell migration in the Beas-2B normal lung-derived bronchoepithelial cell line. This suggests that GHSROS function may be dependent on the oncogenic context. The identification of GHSROS, which is expressed in lung cancer and stimulates cell migration in lung cancer cell lines, contributes to the growing number of non-coding RNAs that play a role in the regulation of tumourigenesis and metastatic cancer progression.
Resumo:
This is the protocol for a review and there is no abstract. The objectives are as follows: To determine the evidence supporting the use of recruitment manoeuvres in mechanically ventilated neonates and identify the optimal method of lung recruitment. To determine the effects of lung recruitment manoeuvres in neonates receiving ventilatory support on neonatal mortality and development of chronic lung disease when compared to no recruitment. If data are available, subgroup analyses will include: chronological age, gestational age, lung pathophysiology and pre-existing lung disease, mode and length of ventilation, timing and frequency of recruitment techniques.
Resumo:
Aims Although suctioning is a standard airway maintenance procedure, there are significant associated risks, such as loss of lung volume due to high negative suction pressures. This study aims to assess the extent and duration of change in end-expiratory level (EEL) resulting from endotracheal tube (ETT) suction and to examine the relationship between EEL and regional lung ventilation in ventilated preterm infants with respiratory distress syndrome. Methods A prospective observational clinical study of the effect of ETT suction on 20 non-muscle-relaxed preterm infants with respiratory distress syndrome (RDS) on conventional mechanical ventilation was conducted in a neonatal intensive care unit. Ventilation distribution was measured with regional impedance amplitudes and EEL using electrical impedance tomography. Results ETT suction resulted in a significant increase in EEL post-suction (P < 0.01). Regionally, anterior EEL decreased and posterior EEL increased post-suction, suggesting heterogeneity. Tidal volume was significantly lower in volume-guarantee ventilation compared with pressure-controlled ventilation (P = 0.04). Conclusions ETT suction in non-muscle-relaxed and ventilated preterm infants with RDS results in significant lung volume increase that is maintained for at least 90 min. Regional differences in distribution of ventilation with ETT suction suggest that the behaviour of the lung is heterogeneous in nature.
Resumo:
miR-126 has been implicated in the processes of inflammation and angiogenesis. Through these processes, miR-126 is implicated in cancer biology, but its role there has not been well reviewed. The aim of this review is to examine the molecular mechanisms and clinicopathological significance of miR-126 in human cancers. miR-126 was shown to have roles in cancers of the gastrointestinal tract, genital tracts, breast, thyroid, lung and some other cancers. Its expression was suppressed in most of the cancers studied. The molecular mechanisms that are known to cause aberrant expression of miR-126 include alterations in gene sequence, epigenetic modification and alteration of dicer abundance. miR-126 can inhibit progression of some cancers via negative control of proliferation, migration, invasion, and cell survival. In some instances, however, miR-126 supports cancer progression via promotion of blood vessel formation. Downregulation of miR-126 induces cancer cell proliferation, migration, and invasion via targeting specific oncogenes. Also, reduced levels of miR-126 are a significant predictor of poor survival of patients in many cancers. In addition, miR-126 can alter a multitude of cellular mechanisms in cancer pathogenesis via suppressing gene translation of numerous validated targets such as PI3K, KRAS, EGFL7, CRK, ADAM9, HOXA9, IRS-1, SOX-2, SLC7A5 and VEGF. To conclude, miR-126 is commonly down-regulated in cancer, most likely due to its ability to inhibit cancer cell growth, adhesion, migration, and invasion through suppressing a range of important gene targets. Understanding these mechanisms by which miR-126 is involved with cancer pathogenesis will be useful in the development of therapeutic targets for the management of patients with cancer.
Resumo:
Background The role of human adenoviruses (HAdVs) in chronic respiratory disease pathogenesis is recognized. However, no studies have performed molecular sequencing of HAdVs from the lower airways of children with chronic endobronchial suppuration. We thus examined the major HAdV genotypes/species, and relationships to bacterial coinfection, in children with protracted bacterial bronchitis (PBB) and mild bronchiectasis (BE). Methods Bronchoalveolar lavage (BAL) samples of 245 children with PBB or mild (cylindrical) BE were included in this prospective cohort study. HAdVs were genotyped (when possible) in those whose BAL had HAdV detected (HAdV+). Presence of bacterial infection (defined as ≥104 colony-forming units/mL) was compared between BAL HAdV+ and HAdV negative (HAdV−) groups. Immune function tests were performed including blood lymphocyte subsets in a random subgroup. Results Species C HAdVs were identified in 23 of 24 (96%) HAdV+ children; 13 (57%) were HAdV-1 and 10 (43%) were HAdV-2. An HAdV+ BAL was significantly associated with bacterial coinfection with Haemophilus influenzae, Moraxella catarrhalis, or Streptococcus pneumoniae (odds ratio [OR], 3.27; 95% confidence interval, 1.38–7.75; P = .007) and negatively associated with Staphylococcus aureus infection (P = .03). Young age was related to increased rates of HAdV+. Blood CD16 and CD56 natural killer cells were significantly more likely to be elevated in those with HAdV (80%) compared with those without (56.1%) (P = .027). Conclusions HAdV-C is the major HAdV species detected in the lower airways of children with PBB and BE. Younger age appears to be an important risk factor for HAdV+ of the lower airways and influences the likelihood of bacterial coinfection
Resumo:
Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.
Resumo:
Conjugation of chemicals with glutathione (GSH) can lead to decreased or increased toxicity. A genetic deficiency in the GSH S-transferase μ class gene M1 has been hypothesized to lead to greater risk of lung cancer in smokers. Recently a gene deletion polymorphism involving the human θ enzyme T1 has been described; the enzyme is present in erythrocytes and can be readily assayed. A rat θ class enzyme, 5-5, has structural and catalytic similarity and the protein was expressed in the Salmonella typhimurium tester strain TA1535. Expression of the cDNA vector increased the mutagenicity of ethylene dibromide and several methylene dihalides. Mutations resulting from the known GSH S-transferase substrate 1,2-epoxy-3-(4′nitrophenoxy)propane were decreased in the presence of the transferase. Expression of transferase 5-5 increased mutations when 1,2,3,4-diepoxybutane (butadiene diepoxide), 4-bromo-1,2-epoxybutane, or 1,3-dichloracetone were added. The latter compound is a model for the putative 1,2-dibromo-3-chloropropane oxidation product 1-bromo-3-chloroacetone. These genotoxicity and genotyping assays may be of use in further studies of the roles of GSH S-transferase θ enzymes in bioactivation and detoxication and any changes in risk due to polymorphism.
Resumo:
Rationale: Chronic lung disease characterized by loss of lung tissue,inflammation, and fibrosis represents a major global health burden. Cellular therapies that could restore pneumocytes and reduce inflammation and fibrosis would be a major advance in management. Objectives: To determine whether human amnion epithelial cells (hAECs), isolated from term placenta and having stem cell–like and antiinflammatory properties, could adopt an alveolar epithelial phenotype and repair a murine model of bleomycin-induced lung injury. Methods: Primary hAECs were cultured in small airway growth medium to determine whether the cells could adopt an alveolar epithelial phenotype. Undifferentiated primary hAECs were also injected parenterally into SCID mice after bleomycin-induced lung injury and analyzed for production of surfactant protein (SP)-A, SP-B, SP-C, and SP-D. Mouse lungs were also analyzed for inflammation and collagen deposition. Measurements and Main Results: hAECs grown in small airway growth medium developed an alveolar epithelial phenotype with lamellar body formation, production of SPs A–D, and SP-D secretion. Although hAECs injected into mice lacked SPs, hAECs recovered from mouse lungs 2 weeks posttransplantation produced SPs. hAECs remained engrafted over the 4-week test period. hAEC administration reduced inflammation in association with decreased monocyte chemoattractant protein-1, tumor necrosis factor-a, IL-1 and -6, and profibrotic transforming growth factor-b in mouse lungs. In addition,lung collagen content was significantly reduced by hAEC treatment as a possible consequence of increased degradation by matrix metalloproteinase-2 and down-regulation of the tissue inhibitors f matrix metalloproteinase-1 and 2. Conclusions: hAECs offer promise as a cellular therapy for alveolar restitution and to reduce lung inflammation and fibrosis.