932 resultados para Locomotor sensitization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pain differs from other sensations in many respects. Primary pain-sensitive neurons respond to a wide variety of noxious stimuli, in contrast to the relatively specific responses characteristic of other sensory systems, and the response is often observed to sensitize on repeated presentation of a painful stimulus, while adaptation is typically observed in other sensory systems. In most cases the cellular mechanisms of transduction and sensitization in response to painful stimuli are not understood. We report here that application of pulses of noxious heat to a subpopulation of isolated primary sensory neurons rapidly activates an inward current. The ion channel activated by heat discriminates poorly among alkali cations. Calcium ions both carry current and partially suppress the current carried by other ions. The current is markedly increased by bradykinin, a potent algogenic nonapeptide that is known to be released in vivo by tissue damage. Phosphatase inhibitors prolong the sensitization caused by bradykinin, and a similar sensitization is caused by activators of protein kinase C. We conclude that bradykinin sensitizes the response to heat by activating protein kinase C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects in the order Plecoptera (stoneflies) use a form of two-dimensional aerodynamic locomotion called surface skimming to move across water surfaces. Because their weight is supported by water, skimmers can achieve effective aerodynamic locomotion even with small wings and weak flight muscles. These mechanical features stimulated the hypothesis that surface skimming may have been an intermediate stage in the evolution of insect flight, which has perhaps been retained in certain modern stoneflies. Here we present a phylogeny of Plecoptera based on nucleotide sequence data from the small subunit rRNA (18S) gene. By mapping locomotor behavior and wing structural data onto the phylogeny, we distinguish between the competing hypotheses that skimming is a retained ancestral trait or, alternatively, a relatively recent loss of flight. Our results show that basal stoneflies are surface skimmers, and that various forms of surface skimming are distributed widely across the plecopteran phylogeny. Stonefly wings show evolutionary trends in the number of cross veins and the thickness of the cuticle of the longitudinal veins that are consistent with elaboration and diversification of flight-related traits. These data support the hypothesis that the first stoneflies were surface skimmers, and that wing structures important for aerial flight have become elaborated and more diverse during the radiation of modern stoneflies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient A-type K+ channels (IA) in neurons have been implicated in the delay of the spike onset and the decrease in the firing frequency. Here we have characterized biophysically and pharmacologically an IA current in lamprey locomotor network neurons that is activated by suprathreshold depolarization and is specifically blocked by catechol at 100 μM. The biophysical properties of this current are similar to the mammalian Kv3.4 channel. The role of the IA current both in single neuron firing and in locomotor pattern generation was analyzed. The IA current facilitates Na+ channel recovery from inactivation and thus sustains repetitive firing. The role of the IA current in motor pattern generation was examined by applying catechol during fictive locomotion induced by N-methyl-d-aspartate. Blockade of this current increased the locomotor burst frequency and decreased the firing of motoneurons. Although an alternating motor pattern could still be generated, the cycle duration was less regular, with ventral roots bursts failing on some cycles. Our results thus provide insights into the contribution of a high-voltage-activated IA current to the regulation of firing properties and motor coordination in the lamprey spinal cord.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to identify guanine nucleotide-binding proteins (G proteins) involved in the agonist- and guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S])-induced increase in the Ca2+ sensitivity of 20-kDa myosin light chain (MLC20) phosphorylation and contraction in smooth muscle. A constitutively active, recombinant val14p21rhoA.GTP expressed in the baculovirus/Sf9 system, but not the protein expressed without posttranslational modification in Escherichia coli, induced at constant Ca2+ (pCa 6.4) a slow contraction associated with increased MLC20 phosphorylation from 19.8% to 29.5% (P < 0.05) in smooth muscle permeabilized with beta-esein. The effect of val14p21rhoA.GTP was inhibited by ADP-ribosylation of the protein and was absent in smooth muscle extensively permeabilized with Triton X-100. ADP-ribosylation of endogenous p21rho with epidermal cell differentiation inhibitor (EDIN) inhibited Ca2+ sensitization induced by GTP [in rabbit mesenteric artery (RMA) and rabbit ileum smooth muscles], by carbachol (in rabbit ileum), and by endothelin (in RMA), but not by phenylephrine (in RMA), and only slowed the rate without reducing the amplitude of contractions induced in RMA by 1 microM GTP[gamma-S] at constant Ca2+ concentrations. AlF(4-)-induced Ca2+ sensitization was inhibited by both guanosine 5'-[beta-thio]diphosphate (GDP[beta-S]) and by EDIN. EDIN also inhibited, to a lesser extent, contractions induced by Ca2+ alone (pCa 6.4) in both RMA and rabbit ileum. ADP-ribosylation of trimeric G proteins with pertussis toxin did not inhibit Ca2+ sensitization. We conclude that p21rho may play a role in physiological Ca2+ sensitization as a cofactor with other messengers, rather than as a sole direct inhibitor of smooth muscle MLC20 phosphatase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In clause is given robotic a complex for drilling and milling sandwich shells from polymeric composites. The machining of polymeric composite materials has technological problems. At drilling sandwich shells there is a probability of destruction of a drill from hit of the tool in a partition. The system sensibilization robotic complex for increase of reliability of work of the cutting tool of the small size is offered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropidurid lizards have colonized a variety of Brazilian open environments without remarkable morphological variation, despite ecological and structural differences among habitats used. This study focuses on two Tropidurus sister-species that, despite systematic proximity and similar morphology, exhibit great ecological divergence and a third ecologically generalist congeneric species providing an outgroup comparison. We quantified jumping capacity and sprint speed of each species on sand and rock to test whether ecological divergence was also accompanied by differences in locomotor performance. Relevant physiological traits possibly associated with locomotor performance metabolic scopes and fiber type composition, power output and activity of the enzymes citrate synthase, pyruvate kinase and lactate dehydrogenase of the iliofibularis muscle - were also compared among the three Tropidurus species. We found that the two sister-species exhibited remarkable differences in jumping performance, while Tropidurus oreadicus, the more distantly related species, exhibited intermediate values. Tropidurus psamonastes, a species endemic to sand dunes, exhibited high absolute sprint speeds on sand, jumped rarely and possessed a high proportion of glycolytic fibers and low activity of citrate synthase. The sister-species Tropidurus itambere, endemic to rocky outcrops, performed a large number of jumps and achieved lower absolute sprint speed than T. psamonastes. This study provides evidence of rapid divergence of locomotor parameters between sister-species that use different substrates, which is only partially explained by variation in physiological parameters of the iliofibularis muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During metamorphosis, most amphibians undergo rapid shifts in their morphology that allow them to move from an aquatic to a more terrestrial existence. Two important challenges associated with this shift in habitat are the necessity to switch from an aquatic to terrestrial mode of locomotion and changes in the thermal environment. In this study, I investigated the consequences of metamorphosis to the burst swimming and running performance of the European newt Triturus cristatus to determine the nature and magnitude of any locomotor trade-offs that occur across life-history stages. In addition, I investigated whether there were any shifts in the thermal dependence of performance between life-history stages of T. cristatus to compensate for changes in their thermal environment during metamorphosis. A trade-off between swimming and running performance was detected across life-history stages, with metamorphosis resulting in a simultaneous decrease in swimming and increase in running performance. Although the terrestrial habitat of postmetamorphic stages of the newt T. cristatus experienced greater daily fluctuations in temperature than the aquatic habitat of the larval stage, no differences in thermal sensitivity of locomotor performance were detected between the larval aquatic and postmetamorphic stages. The absence of variation across life-history stages of T. cristatus may indicate that thermal sensitivity may be a conservative trait across ontogenetic stages in amphibians, but further studies are required to investigate this assertion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Reduced insulin sensitivity associated with fasting hyperproinsulinaemia is common in type 2 diabetes. Proinsulinaemia is an established independent cardiovascular risk factor. The objective was to investigate fasting and postprandial release of insulin, proinsulin (PI) and 32-33 split proinsulin (SPI) before and after sensitization to insulin with pioglitazone compared to a group treated with glibenclamide. Design and patients: A randomized double-blind placebo-controlled trial. Twenty-two type 2 diabetic patients were recruited along with 10 normal subjects. After 4 weeks washout, patients received a mixed meal and were assigned to receive pioglitazone or glibenclamide for 20 weeks, after which patients received another identical test meal. The treatment regimes were designed to maintain glycaemic control (HbA1c) at pretreatment levels so that ß-cells received an equivalent glycaemic stimulus for both test meals. Measurements: Plasma insulin, PI, SPI and glucose concentrations were measured over an 8-h postprandial period. The output of PI and SPI was measured as the integrated postprandial response (area under the curve, AUC). Results: Pioglitazone treatment resulted in a significant reduction in fasting levels of PI and SPI compared to those of the controls. Postprandially, pioglitazone treatment had no effect on the insulin AUC response to the meal but significantly reduced the PI and SPI AUCs. Glibenclamide increased fasting insulin and the postprandial insulin AUC but had no effect on the PI and SPI AUCs. Conclusions: Sensitization to insulin with pioglitazone reduces the amount of insulin precursor species present in fasting and postprandially and may reduce cardiovascular risk. © 2007 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone marrow stromal cells (BMSCs) have the potential to improve functional recovery in patients with spinal cord injury (SCI); however, they are limited by low survival rates after transplantation in the injured tissue. Our objective was to clarify the effects of a temporal blockade of interleukin 6 (IL-6)/IL-6 receptor (IL-6R) engagement using an anti-mouse IL-6R monoclonal antibody (MR16-1) on the survival rate of BMSCs after their transplantation in a mouse model of contusion SCI. MR16-1 cotreatment improved the survival rate of transplanted BMSCs, allowing some BMSCs to differentiate into neurons and astrocytes, and improved locomotor function recovery compared with BMSC transplantation or MR16-1 treatment alone. The death of transplanted BMSCs could be mainly related to apoptosis rather than necrosis. Transplantation of BMSC with cotreatment of MR16-1 was associated with a decrease of some proinflammatory cytokines, an increase of neurotrophic factors, decreased apoptosis rates of transplanted BMSCs, and enhanced expression of survival factors Akt and extracellular signal-regulated protein kinases 1/2. We conclude that MR16-1 treatment combined with BMSC transplants helped rescue neuronal cells and axons after contusion SCI better than BMSCs alone by modulating the inflammatory/immune responses and decreasing apoptosis. © 2013 by the American Association of Neuropathologists, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ackground Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury. Methods 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length. Results Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies. Conclusions Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in the absence of muscle atrophy and may be quantified using permutation entropy. Joint-specific differences in kinematic complexity may be attributed to different sources of motor control. This work indicates the importance of the ankle for rehabilitation interventions following spinal cord injury.