979 resultados para Litopenaeus Vannamei. Heparin. Heparinoid. Peritonitis. Inflammation. Activity Antimigratory
Resumo:
Multinucleated giant cells (MGC) are cells present in characteristic granulomatous inflammation induced by intracellular infectious agents or foreign materials. The present study evaluated the modulatory effect of granulocyte macrophage colony-stimulating factor (GM-CSF) in association with other cytokines such as interferon-gamma (IFN-γ), tumour necrosis factor-alpha, interleukin (IL)-10 or transforming growth factor beta (TGF-β1) on the formation of MGC from human peripheral blood monocytes stimulated with Paracoccidioides brasiliensis antigen (PbAg). The generation of MGC was determined by fusion index (FI) and the fungicidal activity of these cells was evaluated after 4 h of MGC co-cultured with viable yeast cells of P. brasiliensis strain 18 (Pb18). The results showed that monocytes incubated with PbAg and GM-CSF plus IFN-γ had a significantly higher FI than in all the other cultures, while the addition of IL-10 or TGF-β1 had a suppressive effect on MGC generation. Monocytes incubated with both pro and anti-inflammatory cytokines had a higher induction of foreign body-type MGC rather than Langhans-type MGC. MGC stimulated with PbAg and GM-CSF in association with the other cytokines had increased fungicidal activity and the presence of GM-CSF also partially inhibited the suppressive effects of IL-10 and TGF-β1. Together, these results suggest that GM-CSF is a positive modulator of PbAg-stimulated MGC generation and on the fungicidal activity against Pb18.
Resumo:
The present study evaluated the anti-inflammatory and analgesic properties of Agave sisalana Perrine in classic models of inflammation and pain. The hexanic fraction of A. sisalana (HFAS) was obtained by acid hydrolysis followed by hexanic reflux. Anti-inflammatory properties were examined in three acute mouse models (xylene ear oedema, hind paw oedema and pleurisy) and a chronic mouse model (granuloma cotton pellet). The antinociceptive potential was evaluated in chemical (acetic-acid) and thermal (tail-flick and hot-plate test) models of pain. When given orally, HFAS (5, 10, 25 and 50 mg/kg) reduced ear oedema (p < 0.0001; 52%, 71%, 62% and 42%, respectively). HFAS also reduced hind paw oedema at doses of 10 mg/kg and 25 mg/kg (p < 0.05; 42% and 58%, respectively) and pleurisy at doses of 10 mg/kg and 25 mg/kg (41% and 50%, respectively). In a chronic model, HFAS reduced inflammation by 46% and 58% at doses of 10 mg/kg and 25 mg/kg, respectively. Moreover, this fraction showed analgesic properties against the abdominal writhing in an acetic acid model (at doses of 5-25 mg/kg) with inhibitory rates of 24%, 54% and 48%. The HFAS also showed an increased latency time in the hot-plate (23% and 28%) and tail-flick tests (61% and 66%) for the 25 mg/kg and 50 mg/kg doses, respectively. These results suggest that HFAS has anti-inflammatory and analgesic properties.
Resumo:
Humans are not programmed to be inactive. The combination of both accelerated sedentary lifestyle and constant food availability disturbs ancient metabolic processes leading to excessive storage of energy in tissue, dyslipidaemia and insulin resistance. As a consequence, the prevalence of Type 2 diabetes, obesity and the metabolic syndrome has increased significantly over the last 30 years. A low level of physical activity and decreased daily energy expenditure contribute to the increased risk of cardiovascular morbidity and mortality following atherosclerotic vascular damage. Physical inactivity leads to the accumulation of visceral fat and consequently the activation of the oxidative stress/inflammation cascade, which promotes the development of atherosclerosis. Considering physical activity as a 'natural' programmed state, it is assumed that it possesses atheroprotective properties. Exercise prevents plaque development and induces the regression of coronary stenosis. Furthermore, experimental studies have revealed that exercise prevents the conversion of plaques into a vulnerable phenotype, thus preventing the appearance of fatal lesions. Exercise promotes atheroprotection possibly by reducing or preventing oxidative stress and inflammation through at least two distinct pathways. Exercise, through laminar shear stress activation, down-regulates endothelial AT1R (angiotensin II type 1 receptor) expression, leading to decreases in NADPH oxidase activity and superoxide anion production, which in turn decreases ROS (reactive oxygen species) generation, and preserves endothelial NO bioavailability and its protective anti-atherogenic effects. Contracting skeletal muscle now emerges as a new organ that releases anti-inflammatory cytokines, such as IL-6 (interleukin-6). IL-6 inhibits TNF-α (tumour necrosis factor-α) production in adipose tissue and macrophages. The down-regulation of TNF-α induced by skeletal-muscle-derived IL-6 may also participate in mediating the atheroprotective effect of physical activity.
Resumo:
Altered serine protease activity is associated with skin disorders in humans and in mice. The serine protease channel-activating protease-1 (CAP1; also termed protease serine S1 family member 8 (Prss8)) is important for epidermal homeostasis and is thus indispensable for postnatal survival in mice, but its roles and effectors in skin pathology are poorly defined. In this paper, we report that transgenic expression in mouse skin of either CAP1/Prss8 (K14-CAP1/Prss8) or protease-activated receptor-2 (PAR2; Grhl3(PAR2/+)), one candidate downstream target, causes epidermal hyperplasia, ichthyosis and itching. K14-CAP1/Prss8 ectopic expression impairs epidermal barrier function and causes skin inflammation characterized by an increase in thymic stromal lymphopoietin levels and immune cell infiltrations. Strikingly, both gross and functional K14-CAP1/Prss8-induced phenotypes are completely negated when superimposed on a PAR2-null background, establishing PAR2 as a pivotal mediator of pathogenesis. Our data provide genetic evidence for PAR2 as a downstream effector of CAP1/Prss8 in a signalling cascade that may provide novel therapeutic targets for ichthyoses, pruritus and inflammatory skin diseases.
Resumo:
BACKGROUND AND AIMS: Normal weight obesity (NWO) is defined as an excessive body fat associated with a normal body mass index (BMI) and has been associated with early inflammation, but its relationship with cardiovascular risk factors await investigation. METHODS AND RESULTS: Cross-sectional study including 3213 women and 2912 men aged 35-75 years to assess the clinical characteristics of NWO in Lausanne, Switzerland. Body fat was assessed by bioimpedance. NWO was defined as a BMI<25 kg/m(2) and a % body fat ≥66(th) gender-specific percentiles. The prevalence of NWO was 5.4% in women and less than 3% in men, so the analysis was restricted to women. NWO women had a higher % of body fat than overweight women. After adjusting for age, smoking, educational level, physical activity and alcohol consumption, NWO women had higher blood pressure and lipid levels and a higher prevalence of dyslipidaemia (odds-ratio=1.90 [1.34-2.68]) and fasting hyperglycaemia (odds-ratio=1.63 [1.10-2.42]) than lean women, whereas no differences were found between NWO and overweight women. Conversely, no differences were found between NWO and lean women regarding levels of CRP, adiponectin and liver markers (alanine aminotransferase, aspartate aminotransferase and gamma glutamyl transferase). Using other definitions of NWO led to similar conclusions, albeit some differences were no longer significant. CONCLUSION: NWO is almost nonexistent in men. Women with NWO present with higher cardiovascular risk factors than lean women, while no differences were found for liver or inflammatory markers. Specific screening of NWO might be necessary in order to implement cardiovascular prevention.
Resumo:
Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases.
Resumo:
Genetic polymorphisms near IL28B are associated with spontaneous and treatment-induced clearance of hepatitis C virus (HCV), two processes that require the appropriate activation of the host immune responses. Intrahepatic inflammation is believed to mirror such activation, but its relationship with IL28B polymorphisms has yet to be fully appreciated. We analyzed the association of IL28B polymorphisms with histological and follow-up features in 2335 chronically HCV-infected Caucasian patients. Assessable phenotypes before any antiviral treatment included necroinflammatory activity (n = 1,098), fibrosis (n = 1,527), fibrosis progression rate (n = 1,312), and hepatocellular carcinoma development (n = 1,915). Associations of alleles with the phenotypes were evaluated by univariate analysis and multivariate logistic regression, accounting for all relevant covariates. The rare G allele at IL28B marker rs8099917-previously shown to be at risk of treatment failure-was associated with lower activity (P = 0.04), lower fibrosis (P = 0.02) with a trend toward lower fibrosis progression rate (P = 0.06). When stratified according to HCV genotype, most significant associations were observed in patients infected with non-1 genotypes (P = 0.003 for activity, P = 0.001 for fibrosis, and P = 0.02 for fibrosis progression rate), where the odds ratio of having necroinflammation or rapid fibrosis progression for patients with IL28B genotypes TG or GG versus TT were 0.48 (95% confidence intervals 0.30-0.78) and 0.56 (0.35-0.92), respectively. IL28B polymorphisms were not predictive of the development of hepatocellular carcinoma. CONCLUSION: In chronic hepatitis C, IL28B variants associated with poor response to interferon therapy may predict slower fibrosis progression, especially in patients infected with non-1 HCV genotypes.
Resumo:
The peptidoglycan of Gram-positive bacteria is known to trigger cytokine release from peripheral blood mononuclear cells (PBMCs). However, it requires 100-1000 times more Gram-positive peptidoglycan than Gram-negative lipopolysaccharide to release the same amounts of cytokines from target cells. Thus, either peptidoglycan is poorly active or only part of it is required for PBMC activation. To test this hypothesis, purified Streptococcus pneumoniae walls were digested with their major autolysin N-acetylmuramoyl-L-alanine amidase, and/or muramidase. Solubilized walls were separated by reverse phase high pressure chromatography. Individual fractions were tested for their PBMC-stimulating activity, and their composition was determined. Soluble components had a Mr between 600 and 1500. These primarily comprised stem peptides cross-linked to various extents. Simple stem peptides (Mr <750) were 10-fold less active than undigested peptidoglycan. In contrast, tripeptides (Mr >1000) were >/=100-fold more potent than the native material. One dipeptide (inactive) and two tripeptides (active) were confirmed by post-source decay analysis. Complex branched peptides represented </=2% of the total material, but their activity (w/w) was almost equal to that of LPS. This is the first observation suggesting that peptidoglycan stem peptides carry high tumor necrosis factor-stimulating activity. These types of structures are conserved among Gram-positive bacteria and will provide new material to help elucidate the mechanism of peptidoglycan-induced inflammation.
Resumo:
The three isotypes of peroxisome proliferator-activated receptors (PPARs), PPARalpha, beta/delta and gamma, are ligand-inducible transcription factors that belong to the nuclear hormone receptor family. PPARs are implicated in the control of inflammatory responses and in energy homeostasis and thus, can be defined as metabolic and anti-inflammatory transcription factors. They exert their anti-inflammatory effects by inhibiting the induction of pro-inflammatory cytokines, adhesion molecules and extracellular matrix proteins or by stimulating the production of anti-inflammatory molecules. Furthermore, PPARs modulate the proliferation, differentiation and survival of immune cells including macrophages, B cells and T cells. This review discusses the molecular mechanisms by which PPARs and their ligands modulate the inflammatory response. In addition, it presents recent developments implicating PPAR specific ligands in potential treatments of inflammation-related diseases, such as atherosclerosis, inflammatory bowel diseases, Parkinson's and Alzheimer's diseases.
Resumo:
OBJECTIVE: The "Pas à Pas" initiative aimed at evaluating the weekly physical activity (PA) and its determinants in a large cohort of dialysis patients. SETTING: Physical inactivity is a risk factor for mortality in maintenance dialysis patients and is still poorly documented in this population. DESIGN: A prospective national epidemiological study was performed. SUBJECTS: A total of 1,163 patients on maintenance dialysis (hemodialysis and peritoneal dialysis) were included. INTERVENTION AND MAIN OUTCOME MEASURE: PA was recorded during seven consecutive days using a pedometer to measure daily step numbers. RESULTS: Median age was 63 years (Q1 51-Q3 75). Sixty-three percent were sedentary (<5000 steps/day) with a median of 3,688 steps/day (1,866-6,271)]. PA level was similar between hemodialysis patients and those on peritoneal dialysis (3,693 steps [1,896-6,307] vs. 3,320 [1,478-5,926], P = .33). In hemodialysis patients, PA was lower on dialysis days compared with nondialysis days (2,912 [1,439-5,232] vs. 4,054 [2,136-7,108], respectively, P < .01). PA gradually decreased with age, 57% being sedentary between 50 and 65 years and 83% of patients after 80 years. Beyond this age effect, we identified, for the first time, specific phenotypes of patients with lower PA, such as inflammation, cardiovascular disease, protein energy wasting, obesity, and diabetes. By contrast, previous kidney transplantation and a higher muscle mass were associated with higher PA. CONCLUSIONS: Dialysis patients present a very low level of PA with high sedentary. Acting on patient's modifiable phenotypes may help to increase PA to improve morbidity, mortality, and quality of life.
Resumo:
Purpose: To describe the evolution of retinal thickness in eyes affected with acute anterior uveitis (AAU) in the course of follow-up and to assess its correlation with severity of inflammatory activity in the anterior chamber. Methods: Design: Prospective, cohort study Setting: Institutional study Patient population: 72 eyes (affected and fellow eyes) of 36 patients Observation procedure: Patients were followed daily until beginning of resolution of inflammatory activity and weekly thereafter. Optical coherence tomography and laser flare photometry were performed at each visit. Treatment consisted of topical corticosteroids Main outcome measures: Retinal thickness of affected eyes, difference in retinal thickness between affected and fellow eyes and their evolution in time, association between maximal retinal thickness and initial laser flare photometry. Results: Difference in retinal thickness between affected and fellow eyes became significant on average seven days from baseline and remained so through-out follow-up (p<0.001). There was a steep increase in retinal thickness of affected eyes followed by a progressive decrease after reaching a peak value. Maximal difference in retinal thickness between affected and fellow eyes was observed between 17 and 25 days from baseline and exhibited a strong, positive correlation with initial laser flare photometry values (p=0.015). Conclusions: Retinal thickness in eyes affected with AAU presents a steep increase over 3 to 4 weeks and then gradually decreases. Severity of inflammation at baseline predicts the amount of retinal thickening in affected eyes. A characteristic pattern of temporal response of retinal anatomy to inflammatory stimuli seems to arise.
Resumo:
Intermittent claudication (IC) is the most common clinical manifestation of atherosclerotic peripheral arterial disease. Exercise training plays a major role in treating patients with IC. Regular exercise increases functional walking capacity, reduces cardiovascular mortality and improves quality of life. This seems to be achieved by: favorable effect on cardiovascular risk factors, anti-inflammatory effect, increased collateral blood flux, improved rheology profile, endothelial function, fibrinolysis, and muscular metabolism. However, exact mechanisms underlying beneficial effect of exercise remain largely unknown. Exercise modalities will be discussed in this article.
Resumo:
Repair of damaged tissue requires the coordinated action of inflammatory and tissue-specific cells to restore homeostasis, but the underlying regulatory mechanisms are poorly understood. In this paper, we report new roles for MKP-1 (mitogen-activated protein kinase [MAPK] phosphatase-1) in controlling macrophage phenotypic transitions necessary for appropriate muscle stem cell¿dependent tissue repair. By restricting p38 MAPK activation, MKP-1 allows the early pro- to antiinflammatory macrophage transition and the later progression into a macrophage exhaustion-like state characterized by cytokine silencing, thereby permitting resolution of inflammation as tissue fully recovers. p38 hyperactivation in macrophages lacking MKP-1 induced the expression of microRNA-21 (miR-21), which in turn reduced PTEN (phosphatase and tensin homologue) levels, thereby extending AKT activation. In the absence of MKP-1, p38-induced AKT activity anticipated the acquisition of the antiinflammatory gene program and final cytokine silencing in macrophages, resulting in impaired tissue healing. Such defects were reversed by temporally controlled p38 inhibition. Conversely, miR-21¿AKT interference altered homeostasis during tissue repair. This novel regulatory mechanism involving the appropriate balance of p38, MKP-1, miR-21, and AKT activities may have implications in chronic inflammatory degenerative diseases.
Resumo:
OBJECTIVE: Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. RESEARCH DESIGN AND METHODS AND RESULTS: First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. CONCLUSIONS: These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.
Resumo:
Background and Aims: Genetic polymorphisms near IL28Bhave been associated with spontaneous and treatment-inducedclearance of hepatitis C virus (HCV). This is believed to proceed viathe appropriate activation of innate and adaptive immune responsestargeting infected hepatocytes. Intrahepatic inflammation is thereflection of the host cell immune response, but its relationshipwith IL28B polymorphisms has yet to be fully appreciated.Methods: We analyzed the association of IL28B polymorphismswith Metavir activity (≥1) and fibrosis scores (≥2) in 1114 HCVinfectedCaucasian patients enrolled in the Swiss Hepatitis C CohortStudy (629, 127, 268 and 110 infected with HCV genotype 1, 2, 3and 4, respectively). In a subgroup of 915 patients with an estimateddate of infection, the association between IL28B polymorphismsand fibrosis progression rate (FPR > median) was assessed. Singlenucleotide polymorphisms (SNPs) of interest were extracted froma dataset generated in a genome-wide association study and/orgenotyped by TaqMan assay. Associations of alleles with differentdegrees of activity and fibrosis were evaluated using an additivemodel of inheritance by multivariate logistic regression, accountingfor all relevant covariates.Results: The rare G allele at marker rs8099917 was associated withlower activity (P = 0.008) and fibrosis (P = 0.01), as well as slower FPR(P = 0.02). Most striking associations were observed among patientsinfected with non-1 genotypes (P = 0.002 for activity, P = 0.002 forfibrosis and P = 0.005 for FPR). In genotype 1-infected patients, theassociation with activity was observed only in the recessive model(P = 0.04), whereas other associations were not significant (P = 0.7for fibrosis and P = 0.4 for FPR).Conclusions: In chronic hepatitis C, IL28B polymorphisms linkedwith a poor virological response to therapy are also associated withreduced intrahepatic necroinflammation and slower liver diseaseprogression. These observations underscore the role played by thehost immune response in clearing HCV, especially in patients withHCV genotypes non-1.