960 resultados para Light water reactors.
Resumo:
Stolzite polymorph of PbWO4 catalyst was prepared by the facile room temperature precipitation method. Structural parameters were refined by the Rietveld analysis using powder X-ray data. PbWO4 was crystallized in the scheelite-type tetragonal structure with space group I4(1)/a (No. 88). Field emission scanning electron microscopy revealed leaf like morphology. Photoluminescence spectra exhibit broad blue emission (425 nm) under the excitation of 356 nm. The photocatalytic degradation of Methylene blue, Rhodamine B and Methyl orange dyes were measured under visible illumination. The 100% dye degradation was observed for MB and RhB dyes within 60 and 105 min. The rate constant was found to be in the decreasing order of MB > RhB > MO which followed the 1st order kinetic mechanism. Therefore, PbWO4 can be a potential candidate for blue component in white LEDs and also acts as a catalyst for the treatment of toxic and non-biodegradable organic pollutants in water. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Herein, we report a facile and effective method to enhance the photocatalytic activity of bismuth oxybromide (BiOBr) semiconductor through the fabrication of heterojunction with Ag3PO4. The as synthesized Ag3PO4/BiOBr microspheres were characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and UV-vis diffuse reflectance spectroscopy (DRS). The new Ag3PO4/BiOBr heterojunctions exhibited wide absorption in the visible-light region and compared to pure BiOBr and Ag3PO4 samples displayed exceptionally high photocatalytic activity for the degradation of typical organic pollutants such as Rhodamine B (RhB) and phenol. The optimal Ag/Bi weight ratio in Ag3PO4/BiOBr microsphere (AB7) was found to be 0.7. The enhanced photocatalytic activity was related to the efficient separation of electron-hole pairs derived from matching band potentials between BiOBr and Ag3PO4 which results into the generation of natural energy bias at heterojunction and subsequent transfer of photoinduced charge carriers. Moreover, the synthesized samples exhibited almost no loss of activity even after 6 recycling runs indicating their high photocatalytic stability. Considering the facile and environment friendly route for the synthesis of Ag3PO4/BiOBr hybrids with enhanced visible-light induced photocatalytic activity, it is possible to widely apply these hybrids in various fields such as waste water treatment. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Human transthyretin (hTTR) is a multifunctional protein that is involved in several neurodegenerative diseases. Besides the transportation of thyroxin and vitamin A, it is also involved in the proteolysis of apolipoprotein A1 and A beta peptide. Extensive analyses of 32 high-resolution X-ray and neutron diffraction structures of hTTR followed by molecular-dynamics simulation studies using a set of 15 selected structures affirmed the presence of 44 conserved water molecules in its dimeric structure. They are found to play several important roles in the structure and function of the protein. Eight water molecules stabilize the dimeric structure through an extensive hydrogen-bonding network. The absence of some of these water molecules in highly acidic conditions (pH <= 4.0) severely affects the interfacial hydrogen-bond network, which may destabilize the native tetrameric structure, leading to its dissociation. Three pairs of conserved water molecules contribute to maintaining the geometry of the ligand-binding cavities. Some other water molecules control the orientation and dynamics of different structural elements of hTTR. This systematic study of the location, absence, networking and interactions of the conserved water molecules may shed some light on various structural and functional aspects of the protein. The present study may also provide some rational clues about the conserved water-mediated architecture and stability of hTTR.
Resumo:
The interactions between poly(vinylpyrrolidone) (PVP) and the reversed micelles composed of water, AOT, and n-heptane are investigated with the aid of phase diagram, measurements of conductivity and viscosity, Fourier transform infrared (FTIR) spectrum, and dynamic light scattering (DLS). The phase diagrams of water/AOT/heptane in the presence of and absence of PVP are given. The conductivity of the water/AOT/heptane reversed micelle without PVP initially increases and then decreases with the increase of water content, ω0 (the molar ratio of water to AOT), while the plots of conductivity (K) versus ω0 of the reversed micelle in the presence of PVP depend on the PVP concentrations. The plot of K versus ω0 with 2.0%wt PVP is similar to that without PVP. Only the ω0,max (the water content that the maximum conductivity corresponds to) is larger than that without PVP. Nevertheless, the conductivity of the reversed micelle containing more than 4%wt PVP always rises with the increase of the water content in the measured range. The DLS results indicate that the hydrodynamic radius (Rh) in the presence and absence of PVP rises with the increase of ω0. The plots with PVP and without PVP have almost the same value when ω0<17; and after that, it quickly increases with the increase of ω0. It is interesting to find that there is almost no effect of the PVP concentration on the viscosity and Rh of the reversed micelle at ω0 = 15. The FTIR results suggest that the contents of SO3--bound water and Na+-bound water both decrease with PVP added, while the content of the bulky-like water increases. However, the trapped water in the hydrophobic chain of the surfactant is nearly unaffected by PVP. It is also found from the FTIR that the carbonyl group stretching vibration of AOT is fitted into two sub-peaks, which center at 1740 and 1729 cm-1, corresponding to the trans and cis conformations of AOT, respectively.
Resumo:
The extinction cross sections of a system containing two particles are calculated by the T-matrix method, and the results are compared with those of two single particles with single-scattering approximation. The necessity of the correction of the refractive indices of water and polystyrene for different incident wavelengths is particularly addressed in the calculation. By this means, the volume fractions allowed for certain accuracy requirements of single-scattering approximation in the light scattering experiment can be evaluated. The volume fractions calculated with corrected refractive indices are compared with those obtained with fixed refractive indices which have been rather commonly used, showing that fixed refractive indices may cause significant error in evaluating multiple scattering effect. The results also give a simple criterion for selecting the incident wavelength and particle size to avoid the 'blind zone' in the turbidity measurement, where the turbidity change is insensitive to aggregation of two particles.
Resumo:
The purpose of this report is to present the results of the initial quantification of background water quality in each of the state's major potable aquifer systems. Results are presented and interpreted in light of the influencing factors which locally and regionally affect ambient ground-water quality. This initial data will serve as a baseline from which future sampling results can be compared. Future sampling of the Network will indicate the extent to which Florida's regional ground-water resources are improving or declining in quality. (Document has 378 pages.)
Resumo:
Results are given of monthly net phytoplankton and zooplankton sampling from a 10 m depth in shelf, slope, and Gulf Stream eddy water along a transect running southeastward from Ambrose Light, New York, in 1976, 1977, and early 1978. Plankton abundance and temperature at 10 m and sea surface salinity at each station are listed. The effects of atmospheric forcing and Gulf Stream eddies on plankton distribution and abundance arc discussed. The frequency of Gulf Stream eddy passage through the New York Bight corresponded with the frequency of tropical-subtropical net phytoplankton in the samples. Gulf Stream eddies injected tropical-subtropical zooplankton onto the shelf and removed shelfwater and its entrained zooplankton. Wind-induced offshore Ekman transport corresponded generally with the unusual timing of two net phytoplankton maxima. Midsummer net phytoplankton maxima were recorded following the passage of Hurricane Belle (August 1976) and a cold front (July 1977). Tropical-subtropical zooplankton which had been injected onto the outer shelf by Gulf Stream eddies were moved to the inner shelf by a wind-induced current moving up the Hudson Shelf Valley. (PDF file contains 47 pages.)
Resumo:
Numerical simulations of fs laser propagation in water have been made to explain the small-scale filaments in water we have observed by a nonlinear fluorescence technique. Some analytical descriptions combined with numerical simulations show that a space-frequency coupling mainly from the interplay among self-phase modulation, dispersion and phase mismatching will reshape the laser beam into a conical wave which plays a major role of energy redistribution and can prevent laser beam from self-guiding over a long distance. An effective group velocity dispersion is introduced to explain the pulse broadening and compression in the filamentation. (c) 2005 American Institute of Physics.
Resumo:
30 p.
Resumo:
The authors report the investigation of filament and supercontinuum generation by focusing a femtosecond laser beam into water doped with silver nanoparticles. The silver nanoparticles enhance the nonlinear optical response of water, leading to broadening of supercontinuum spectra in self-focused femtosecond filaments. During the propagation of the supercontinuum light in the filament, the silver nanoparticles preferentially scatter the short-wavelength light near the plasmon resonant wavelength peak, followed by the scattering of the long-wavelength light. Thus, a side view of the filament shows a full-color spectrum in the visible range, which is herein called "rainbow filament." (c) 2007 American Institute of Physics.
Resumo:
Biomanipulation is a form of biological engineering in which organisms are selectively removed or encouraged to alleviate the symptoms of eutrophication. Most examples involve fish and grazer zooplankton though mussels have also been used. The technique involves continuous management in many deeper lakes and is not a substitute for nutrient control. In some lakes, alterations to the lake environment have given longer-term positive effects. And in some shallow lakes, biomanipulation may be essential, alongside nutrient control, in re- establishing former aquatic-plant-dominated ecosystems which have been lost through severe eutrophication. The emergence of biomanipulation techniques emphasises that lake systems are not simply chemical reactors which respond simply to engineered chemical changes, but very complex and still very imperfectly understood ecosystems which require a yet profounder understanding before they can be restored with certainty.
Resumo:
The three Biesbosch Reservoirs are pumped storage reservoirs, fed with rather polluted and highly eutrophic water from the River Meuse. Air injection at the bottom of the reservoirs prevents thermal stratification, which would otherwise result in serious water quality deterioration. Reservoir mixing also serves as an economic algal control measure; mixing over sufficient depth causes light to play the role of limiting factor and this, combined with zooplankton grazing, keeps the biomass of phytoplankton at acceptable levels. Special problems are caused by benthic, geosmin-producing Oscillatoria species growing on the inner embankment. Rooting up the bottom with a harrow is used as the method of control, based on underwater observations by biological staff trained as SCUBA-divers. With regard to pollutant behaviour the three reservoirs act as a series of fully mixed reactors. This enables the application of kinetic models to describe their behaviour and allows the use of a selective intake policy, e.g. for suspended solids with associated contaminants, ammonia and polynuclear aromatic hydrocarbons. A combination of selective intake and self- purification processes - enhanced by the compartmentalisation of the storage volume in three reservoirs - leads to a striking improvement for many water-quality parameters.
Resumo:
Part 1. Many interesting visual and mechanical phenomena occur in the critical region of fluids, both for the gas-liquid and liquid-liquid transitions. The precise thermodynamic and transport behavior here has some broad consequences for the molecular theory of liquids. Previous studies in this laboratory on a liquid-liquid critical mixture via ultrasonics supported a basically classical analysis of fluid behavior by M. Fixman (e. g., the free energy is assumed analytic in intensive variables in the thermodynamics)--at least when the fluid is not too close to critical. A breakdown in classical concepts is evidenced close to critical, in some well-defined ways. We have studied herein a liquid-liquid critical system of complementary nature (possessing a lower critical mixing or consolute temperature) to all previous mixtures, to look for new qualitative critical behavior. We did not find such new behavior in the ultrasonic absorption ascribable to the critical fluctuations, but we did find extra absorption due to chemical processes (yet these are related to the mixing behavior generating the lower consolute point). We rederived, corrected, and extended Fixman's analysis to interpret our experimental results in these more complex circumstances. The entire account of theory and experiment is prefaced by an extensive introduction recounting the general status of liquid state theory. The introduction provides a context for our present work, and also points out problems deserving attention. Interest in these problems was stimulated by this work but also by work in Part 3.
Part 2. Among variational theories of electronic structure, the Hartree-Fock theory has proved particularly valuable for a practical understanding of such properties as chemical binding, electric multipole moments, and X-ray scattering intensity. It also provides the most tractable method of calculating first-order properties under external or internal one-electron perturbations, either developed explicitly in orders of perturbation theory or in the fully self-consistent method. The accuracy and consistency of first-order properties are poorer than those of zero-order properties, but this is most often due to the use of explicit approximations in solving the perturbed equations, or to inadequacy of the variational basis in size or composition. We have calculated the electric polarizabilities of H2, He, Li, Be, LiH, and N2 by Hartree-Fock theory, using exact perturbation theory or the fully self-consistent method, as dictated by convenience. By careful studies on total basis set composition, we obtained good approximations to limiting Hartree-Fock values of polarizabilities with bases of reasonable size. The values for all species, and for each direction in the molecular cases, are within 8% of experiment, or of best theoretical values in the absence of the former. Our results support the use of unadorned Hartree-Pock theory for static polarizabilities needed in interpreting electron-molecule scattering data, collision-induced light scattering experiments, and other phenomena involving experimentally inaccessible polarizabilities.
Part 3. Numerical integration of the close-coupled scattering equations has been carried out to obtain vibrational transition probabilities for some models of the electronically adiabatic H2-H2 collision. All the models use a Lennard-Jones interaction potential between nearest atoms in the collision partners. We have analyzed the results for some insight into the vibrational excitation process in its dependence on the energy of collision, the nature of the vibrational binding potential, and other factors. We conclude also that replacement of earlier, simpler models of the interaction potential by the Lennard-Jones form adds very little realism for all the complication it introduces. A brief introduction precedes the presentation of our work and places it in the context of attempts to understand the collisional activation process in chemical reactions as well as some other chemical dynamics.
Resumo:
River structure and functioning are governed naturally by geography and climate but are vulnerable to natural and human-related disturbances, ranging from channel engineering to pollution and biological invasions. Biological communities in river ecosystems are able to respond to disturbances faster than those in most other aquatic systems. However, some extremely strong or lasting disturbances constrain the responses of river organisms and jeopardise their extraordinary resilience. Among these, the artificial alteration of river drainage structure and the intense use of water resources by humans may irreversibly influence these systems. The increased canalisation and damming of river courses interferes with sediment transport, alters biogeochemical cycles and leads to a decrease in biodiversity, both at local and global scales. Furthermore, water abstraction can especially affect the functioning of arid and semi-arid rivers. In particular, interception and assimilation of inorganic nutrients can be detrimental under hydrologically abnormal conditions. Among other effects, abstraction and increased nutrient loading might cause a shift from heterotrophy to autotrophy, through direct effects on primary producers and indirect effects through food webs, even in low-light river systems. The simultaneous desires to conserve and to provide ecosystem services present several challenges, both in research and management.
Resumo:
An empirical survey of macrophytes distribution and biomass from four stations, along Nta-wogba stream in Port Harcourt, Nigeria, was conducted between April and December 2007, to quantify the relationship between biomass, in stream nutrients and dissolved ions. The correlation analysis indicated that the biomass of the aquatic macrophytes under consideration, Einochloa pyramidalis; Diplazum sammatii; Cyperus difformis; Alternathera sessilis and Ludwigia decurrens were significantly (P<0.05) related to the nutrients: sulphate, ammonium; nitrate, and phosphate in all the stations. The measurement of total dissolved solid, which is correlated to ionic concentrations and turbidity, provided a rough indication of in stream light availability.