993 resultados para Lead-free piezoelectric ceramic
Resumo:
Several methods have been investigated, with some success, for treating scrap brass to recover copper and zinc, either as pure metals or as salts of the metals. One of the more promising of these methods is electrolysis in sulfate solution for the recovery of pure copper and zinc.
Resumo:
An attempt was made to make lead-lithium alloys by electrodeposition of lithium using a molten bath and a molten lead cathode.The variables taken into consideration were: composition of the melt, temperature of the melt, and current density. The purpose of changing these factors was to determine what effect each had on the current efficiency.
Resumo:
From the standpoint of its practical usefulness, the most important characteristics of metallic lead are its cheapness, resistance to corrosion, plasticity, high specific gravity, low melting point, and its ability to form alloys in which some properties are modified by the addition of other elements, while other properties remain the same.
Resumo:
The Mike Horse mine, in the Huddelston mining district, is fifty-two miles northwest of Helena, Montana. The mine was discovered in 1898 by Joseph Heitmiller. There was only minor production from the date of discovery until 1915; the main drawback being lack of good road.
Resumo:
This thesis is concerned with the beneficiation of an oxidized lead ore. Emphasis was placed upon concentration by flotation rather than by gravity methods, although some investigation was made with the Wilfley shaking table. The concentration of lead minerals received most consideration in the problem, but wherever possible attempts were made to increase the silver and gold concentration along with the lead.
Resumo:
BACKGROUND: The CD4 cell count at which combination antiretroviral therapy should be started is a central, unresolved issue in the care of HIV-1-infected patients. In the absence of randomised trials, we examined this question in prospective cohort studies. METHODS: We analysed data from 18 cohort studies of patients with HIV. Antiretroviral-naive patients from 15 of these studies were eligible for inclusion if they had started combination antiretroviral therapy (while AIDS-free, with a CD4 cell count less than 550 cells per microL, and with no history of injecting drug use) on or after Jan 1, 1998. We used data from patients followed up in seven of the cohorts in the era before the introduction of combination therapy (1989-95) to estimate distributions of lead times (from the first CD4 cell count measurement in an upper range to the upper threshold of a lower range) and unseen AIDS and death events (occurring before the upper threshold of a lower CD4 cell count range is reached) in the absence of treatment. These estimations were used to impute completed datasets in which lead times and unseen AIDS and death events were added to data for treated patients in deferred therapy groups. We compared the effect of deferred initiation of combination therapy with immediate initiation on rates of AIDS and death, and on death alone, in adjacent CD4 cell count ranges of width 100 cells per microL. FINDINGS: Data were obtained for 21 247 patients who were followed up during the era before the introduction of combination therapy and 24 444 patients who were followed up from the start of treatment. Deferring combination therapy until a CD4 cell count of 251-350 cells per microL was associated with higher rates of AIDS and death than starting therapy in the range 351-450 cells per microL (hazard ratio [HR] 1.28, 95% CI 1.04-1.57). The adverse effect of deferring treatment increased with decreasing CD4 cell count threshold. Deferred initiation of combination therapy was also associated with higher mortality rates, although effects on mortality were less marked than effects on AIDS and death (HR 1.13, 0.80-1.60, for deferred initiation of treatment at CD4 cell count 251-350 cells per microL compared with initiation at 351-450 cells per microL). INTERPRETATION: Our results suggest that 350 cells per microL should be the minimum threshold for initiation of antiretroviral therapy, and should help to guide physicians and patients in deciding when to start treatment.
Resumo:
Pododermatitis is frequent in captive flamingos worldwide, but little is known about the associated histopathologic lesions. Involvement of a papillomavirus or herpesvirus has been suspected. Histopathologic evaluation and viral assessment of biopsies from 19 live and 10 dead captive greater flamingos were performed. Selected samples were further examined by transmission electron microscopy and immunohistochemistry. Feet from 10 dead free-ranging greater flamingos were also evaluated. The histologic appearance of lesions of flamingos of increasing age was interpreted as the progression of pododermatitis. Mild histologic lesions were seen in a 3-week-old flamingo chick with no macroscopic lesions, and these were characterized by Micrococcus-like bacteria in the stratum corneum associated with exocytosis of heterophils. The inflammation associated with these bacteria may lead to further histologic changes: irregular columnar proliferations, papillary squirting, and dyskeratosis. In more chronic lesions, hydropic degeneration of keratinocytes, epidermal hyperplasia, and dyskeratosis were seen at the epidermis, as well as proliferation of new blood vessels and increased intercellular matrix in the dermis. Papillomavirus DNA was not identified in any of the samples, while herpesvirus DNA was seen only in a few cases; therefore, these viruses were not thought to be the cause of the lesions. Poor skin health through suboptimal husbandry may weaken the epidermal barrier and predispose the skin to invasion of Micrococcus-like bacteria. Histologic lesions were identified in very young flamingos with no macroscopic lesions; this is likely to be an early stage lesion that may progress to macroscopic lesions.
Resumo:
An analysis about the effect of carbon enrichment of allylhydridopolycarbosilane SMP10® with divinylbenzene (DVB) as a promising material for electrical conductive micro-electrical mechanical systems (MEMS) is presented. The liquid precursors can be micropipetted and cured in polytetrafluoroethylene (PTFE) molds to produce 14 mm diameter disc shaped samples. The effect of pyrolysis temperature and carbon content on the electrical conductivity is discussed. The addition of 28.7 wt.% of DVB was found to be the optimum amount. Carbon was preserved in the microstructure during pyrolysis and the ceramic yield increased from 77.5 to 80.5 wt.%. The electrical conductivity increased from 10−6 to 1 S/cm depending on the annealing temperature. Furthermore, the ceramic samples obtained with this composition were found to be in many cases crack free or with minimal cracks in contrast with the behavior of pure SMP10. Using the same process we demonstrate that also microsized ceramic samples can be produced.
Resumo:
Purpose: Cardiomyocytes are terminally differentiated cells in the adult heart and ischemia and cardiotoxic compounds can lead to cell death and irreversible decline of cardiac function. As testing platforms, isolated organs and primary cells from rodents have been the standard in research and toxicology, but there is a need for better models that more faithfully recapitulate native human biology. Hence, a new in vitro model comprising the advantages of 3D cell culture and the availability of induced pluripotent stem cells (iPSC) from human origin was developed and characterized. Methods: Human cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) were studied in standard 2D culture and as cardiac microtissues (MTs) formed in hanging drops. 2D cultures were examined using immunofluorescence microscopy and Western blotting while the cardiac MTs were subjected to immunofluorescence, contractility, and pharmacological investigations. Results: iPSC-derived CMs in 2D culture showed well-formed myofibrils, cell-cell contacts positive for connexin-43, and other typical cardiac proteins. The cells reacted to pro-hypertrophic growth factors with a substantial increase in myofibrils and sarcomeric proteins. In hanging drop cultures, iPSC-derived cardiomyocytes formed spheroidal MTs within 4 days showing a homogeneous tissue structure with well-developed myofibrils extending throughout the whole spheroid without a necrotic core. MTs showed spontaneous contractions for more than 4 weeks that were recorded by optical motion tracking, sensitive to temperature, and responsive to electrical pacing. Contractile pharmacology was tested with several agents known to modulate cardiac rate and viability. Calcium-transients underlay the contractile activity and were also responsive to electrical stimulation, caffeine-induced Ca2+-release, extracellular calcium levels. Conclusions: 3D culture using iPSC-derived human cardiomyocytes provides an organoid human-based cellular platform that is free of necrosis and recapitulates vital cardiac functionality, thereby providing new and promising relevant model for the evaluation and development of new therapies and detection of cardiotoxicity.
Resumo:
The optical and luminescence properties of CaI2 and NaCl doped with divalent thulium are reported for solar energy applications. These halides strongly absorb solar light from the UV up to 900 nm due to the intense Tm2+ 4f13→4f125d1 electronic transitions. Absorption is followed by emission of 1140 nm light due to the 2F5/2→2F7/2 transition of the 4f13 configuration that can be efficiently converted to electric power by thin film CuInSe2 (CIS) solar cells. Because of a negligible spectral overlap between absorption and emission spectra, a luminescent solar concentrator (LSC) based on these black luminescent materials would not suffer from self-absorption losses. The Tm2+ doped halides may therefore lead to efficient semi-transparent power generating windows that absorb solar light over the whole visible spectrum. It will be shown that the power efficiency of the Tm2+ based LSCs can be up to four times higher compared to LSCs based on organic dyes or quantum dots.
Resumo:
The concentrations of the long-lived nuclear reaction products 129I and 36Cl have been measured in samples from the MEGAPIE liquid metal spallation target. Samples from the bulk target material (lead-bismuth eutectic, LBE), from the interface of the metal free surface with the cover gas, from LBE/steel interfaces and from noble metal absorber foils installed in the cover gas system were analysed using Accelerator Mass Spectrometry at the Laboratory of Ion beam Physics at ETH Zürich. The major part of 129I and 36Cl was found accumulated on the interfaces, particularly at the interface of LBE and the steel walls of the target container, while bulk LBE samples contain only a minor fraction of these nuclides. Both nuclides were also detected on the absorber foils to a certain extent (≪ 1% of the total amount). The latter number is negligible concerning the radio-hazard of the irradiated target material; however it indicates a certain affinity of the absorber foils for halogens, thus proving the principle of using noble metal foils for catching these volatile radionuclides. The total amounts of 129I and 36Cl in the target were estimated from the analytical data by averaging within the different groups of samples and summing up these averages over the total target. This estimation could account for about half of the amount of 129I and 36Cl predicted to be produced using nuclear physics modelling codes for both nuclides. The significance of the results and the associated uncertainties are discussed.
Resumo:
A mass budget was constructed for organic carbon on the upper slope of the Middle Atlantic Bight, a region thought to serve as a depocenter for fine-grained material exported from the adjacent shelf. Various components of the budget are internally consistent, and observed differences can be attributed to natural spatial variability or to the different time scales over which measurements were made. The flux of organic carbon to the sediments in the core of the depocenter zone, at a water depth of 1000 m, was measured with sediment traps to be 65 mg C m**-2 day**-1, of which 6-24 mg C m**-2 day**-1 is buried. Oxygen fluxes into the sediments, measured with incubation chambers attached to a free vehicle lander, correspond to total carbon remineralization rates of 49-70 mg C m**-2 day**-1. Carbon remineralization rates estimated from gradients of Corg within the mixed layer, and from gradients of dissolved ammonia and phosphate in pore waters, sum to only 4-6 mg C m**-2 day**-1. Most of the Corg remineralization in slope sediments is mediated by bacteria and takes place within a few mm of the sediment-water interface. Most of the Corg deposited on the upper slope sediments is supplied by lateral transport from other regions, but even if all of this material were derived from the adjacent shelf, it represents <2% of the mean annual shelf productivity. This value is further lowered by recognizing that as much as half of the Corg deposited on the slope is refractory, having originated by reworking from older deposits. Refractory Corg arrives at the sea bed with an average 14C age 600-900 years older than the pre-bomb 14C age of DIC in seawater, and has a mean life in the sediments with respect to biological remineralization of at least 1000 years. Labile carbon supplied to the slope, on the other hand, is rapidly and (virtually) completely remineralized, with a mean life of < 1 year. Carbon-14 ages of fine-grained carbonate and organic carbon present within the interstices of shelf sands are consistent with this material acting as a source for the old carbon supplied to the slope. Winnowing and export of reworked carbon may contribute to the often-described relationship between organic carbon preservation and accumulation rate of marine sediments.