982 resultados para Land suitability
Resumo:
Attention is directed at land application of piggery effluent (containing urine, faeces, water, and wasted feed) as a potential source of water resource contamination with phosphorus (P). This paper summarises P-related properties of soil from 0-0.05 m depth at 11 piggery effluent application sites, in order to explore the impact that effluent application has had on the potential for run-off transport of P. The sites investigated were situated on Alfisol, Mollisol, Vertisol, and Spodosol soils in areas that received effluent for 1.5-30 years (estimated effluent-P applications of 100-310000 kg P/ha in total). Total (PT), bicarbonate extractable (PB), and soluble P forms were determined for the soil (0-0.05 m) at paired effluent and no-effluent sites, as well as texture, oxalate-extractable Fe and Al, organic carbon, and pH. All forms of soil P at 0-0.05 m depth increased with effluent application (PB at effluent sites was 1.7-15 times that at no-effluent sites) at 10 of the 11 sites. Increases in PB were strongly related to net P applications (regression analysis of log values for 7 sites with complete data sets: 82.6 % of variance accounted for, p <0.01). Effluent irrigation tended to increase the proportion of soil PT in dilute CaCl2-extractable forms (PTC: effluent average 2.0 %; no-effluent average 0.6%). The proportion of PTC in non-molybdate reactive forms (centrifuged supernatant) decreased (no-effluent average, 46.4 %; effluent average, 13.7 %). Anaerobic lagoon effluent did not reliably acidify soil, since no consistent relationship was observed for pH with effluent application. Soil organic carbon was increased in most of the effluent areas relative to the no-effluent areas. The four effluent areas where organic carbon was reduced had undergone intensive cultivation and cropping. Current effluent management at many of the piggeries failed to maximise the potential for waste P recapture. Ten of the case-study effluent application areas have received effluent-P in excess of crop uptake. While this may not represent a significant risk of leaching where sorption retains P, it has increased the risk of transport of P by run-off. Where such sites are close to surface water, run-off P loads should be managed.
Resumo:
Increasing concentrations of atmospheric CO2 decrease stomatal conductance of plants and thus suppress canopy transpiration. The climate response to this CO2-physiological forcing is investigated using the Community Atmosphere Model version 3.1 coupled to Community Land Model version 3.0. In response to the physiological effect of doubling CO2, simulations show a decrease in canopy transpiration of 8%, a mean warming of 0.1K over the land surface, and negligible changes in the hydrological cycle. These climate responses are much smaller than what were found in previous modeling studies. This is largely a result of unrealistic partitioning of evapotranspiration in our model control simulation with a greatly underestimated contribution from canopy transpiration and overestimated contributions from canopy and soil evaporation. This study highlights the importance of a realistic simulation of the hydrological cycle, especially the individual components of evapotranspiration, in reducing the uncertainty in our estimation of climatic response to CO2-physiological forcing. Citation: Cao, L., G. Bala, K. Caldeira, R. Nemani, and G.Ban-Weiss (2009), Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0).
Resumo:
Degradation of RNA in diagnostic specimens can cause false-negative test results and potential misdiagnosis when tests rely on the detection of specific RNA sequence. Current molecular methods of checking RNA integrity tend to be host species or group specific, necessitating libraries of primers and reaction conditions. The objective here was to develop a universal (multi-species) quality assurance tool for determining the integrity of RNA in animal tissues submitted to a laboratory for analyses. Ribosomal RNA (16S rRNA) transcribed from the mitochondrial 16S rDNA was used as template material for reverse transcription to cDNA and was amplified using polymerase chain reaction (PCR). As mitochondrial DNA has a high level of conservation, the primers used were shown to reverse transcribe and amplify RNA from every animal species tested. Deliberate degradation of rRNA template through temperature abuse of samples resulted in no reverse transcription and amplification. Samples spiked with viruses showed that single-stranded viral RNA and rRNA in the same sample degraded at similar rates, hence reverse transcription and PCR amplification of 16S rRNA could be used as a test of sample integrity and suitability for analysis that required the sample's RNA, including viral RNA. This test will be an invaluable quality assurance tool for determination of RNA integrity from tissue samples, thus avoiding erroneous test results that might occur if degraded target RNA is used unknowingly as template material for reverse transcription and subsequent PCR amplification.
Resumo:
The possibility of commercially exploiting plant, animal and human genetic resources unlocked by biotechnology has given rise to a wide range of cultural, environmental, ethical and economic conflicts. While supporters describe this activity as bioprospecting, critics refer to it as biopiracy. According to this latter view, international legal agreements and treaties have disregarded opposition and legalized the possibility of appropriating genetic resources and their derivative products through the use of patents. The legal framework that permits the appropriation of natural genetic products in Colombia also criminalizes aspects of traditional ways of life and enables a legally approved but socially harmful land-grabbing process. The article describes these processes and impact in terms of the inversion of justice and the erosion of environmental sustainability.
Resumo:
In recent years, there have been significant developments in climate science relevant to agriculture and natural resource management. Assessing impacts of climate variability and use of seasonal climate forecasts have become increasingly important elements in the management "toolkit" for many Australian farmers. Consideration of climate change further increases the need for improved management strategies. While climate risk extension activities have kept pace with advances in climate science, a national review of the Vocational Education and Training system in Australia in relation to "weather and climate" showed that these topics were "poorly represented" at the management level in the Australian Qualifications Framework, and needed increased emphasis. Consequently, a new Unit of Competency concerning management of climatic risk was developed and accredited to address this deficiency. The objective of the unit was to build knowledge and skills for better management of climate variability via the elements of surveying climatic and enterprise data; analysing climatic risks and opportunities; and developing climatic risk management strategies. This paper describes establishment of a new unit for vocational education that is designed to harness recent developments in applied climate science for better management of Australia's highly variable climate. The main benefits of the new unit of competency, "Developing climatic risk management strategies,"were seen as improving decisions in climate and agriculture, and reducing climate risk exposure to enhance sustainable agriculture. The educational unit is now within the scope of agricultural colleges, universities, and registered training organisations as an accredited unit.
Resumo:
A framework using assessments of soil condition, pasture composition and woodland density was applied to describe 14 grazing land types as being in A (100% of original carrying capacity), B (75%), C (45%) or D (20%) condition. We assessed the condition of 260 sites, principally along public and some station roads, to provide a benchmark for current land condition. Land types were also assigned relative grazing values between 10 (best) and 0, reflecting soil fertility and potential biomass production. The method identifies particular, 'at-risk' land types for priority investment of resources, while the rationale behind assessments might point to management interventions to improve the condition of those land types. Across all land types, 47% of sites were in A condition, 34% in B condition, 17% in C condition and only 2% in D condition. Seventy-five percent of land types with grazing values >5 were in A or B condition, compared with 88% for those with grazing values ?5. For Georgetown granites, only 27% of sites were in A or B condition, with values for other land types being: alluvials 59%, black soils 64% and red duplex soils 57%, suggesting that improving management of these land types is a priority issue. On land types with high grazing value, the major discounting factor was pasture composition (72% of sites discounted), while increasing woodland density was the main discount (73% of sites discounted) on low grazing value land types.
Resumo:
Aconophora compressa (Hemiptera: Membracidae), a biological control agent introduced against the weed Lantana camara (Verbenaceae) in Australia, has since been observed on several non-target plant species, including native mangrove Avicennia marina (Acanthaceae). In this study we evaluated the suitability of two native mangroves, A. marina and Aegiceras corniculatum (Myrsinaceae), for the survival and development of A. compressa through no-choice field cage studies. The longevity of females was significantly higher on L. camara (57.7 ± 3.8 days) than on A. marina (43.3 ± 3.3 days) and A. corniculatum (45.7 ± 3.8 days). The proportion of females laying eggs was highest on L. camara (72%) followed by A. marina (36%) and A. corniculatum (17%). More egg batches per female were laid on L. camara than on A. marina and A. corniculatum. Though more nymphs per shoot emerged on L. camara (29.9 ± 2.8) than on A. marina (13 ± 4.8) and A. corniculatum (10 ± 5.3), the number of nymphs that developed through to adults was not significantly different. The duration of nymphal development was longer on A. marina (67 ± 5.8 days) than on L. camara (48 ± 4 days) and A. corniculatum (43 ± 4.6 days). The results, which are in contrast to those from previous glasshouse and quarantine trials, provide evidence that A. compressa adults can survive, lay eggs and complete nymphal development on the two non-target native mangroves in the field under no-choice condition.
Resumo:
Land condition monitoring information is required for the strategic management of grazing land and for a better understanding of ecosystem processes. Yet, for policy makers and those land managers whose properties are situated within north-eastern Australia's vast Great Barrier Reef catchments, there has been a general lack of geospatial land condition monitoring information. This paper provides an overview of integrated land monitoring activity in rangeland areas of two major Reef catchments in Queensland: the Burdekin and Fitzroy regions. The project aims were to assemble land condition monitoring datasets that would assist grazing land management and support decision-makers investing public funds; and deliver these data to natural resource management(NRM) community groups, which had been given increased responsibility for delivering local environmental outcomes. We describe the rationale and processes used to produce new land condition monitoring datasets derived from remotely sensed Landsat thematic mapper (TM) and high resolution SPOT 5 satellite imagery and from rapid land condition ground assessment. Specific products include subcatchment groundcover change maps, regional mapping of indicative very poor land condition, and stratified land condition site summaries. Their application, integration, and limitations are discussed. The major innovation is a better understanding of NRM issues with respect to land condition across vast regional areas, and the effective transfer of decision-making capacity to the local level. Likewise, with an increased ability to address policy questions from an evidence-based position, combined with increased cooperation between community, industry and all levels of government, a new era has emerged for decision-makers in rangeland management.
Resumo:
Despite biocontrol research spanning over 100 years, the hybrid weed, commonly referred to as Lantana camara, is not under adequate control. Host specificity and varietal preference of released agents, climatic suitability of a region for released agents, number of agents introduced and range or area of infestation appear to play a role in limiting biocontrol success. At least one of 41 species of mainly leaf- or flower-feeding insects has been introduced, or spread, to 41 of the 70 countries or regions where lantana occurs. Over half (26) of these species have established, achieving varying levels of herbivory and presumably some degree of control. Accurate taxonomy of the plant and adaptation of potential agents to the host plant are some of the better predictors of at least establishment success. Retrospective analysis of the hosts of introduced biocontrol agents for L. camara show that a greater proportion of agents that were collected from L. camara or Lantana urticifolia established, than agents that were collected from other species of Lantana. Of the introduced agents that had established and were oligophagous, 18 out of 22 established. The proportion of species establishing, declined with the number of species introduced. However, there was no trend when oceanic islands were treated separately from mainland areas and the result is likely an artefact of how introductions have changed over time. A calculated index of the degree of herbivory due to agents known to have caused some damage per country, was not related to land area infested with lantana for mainlands nor for oceanic islands. However, the degree of herbivory is much higher on islands than mainlands. This difference between island and mainland situations may reflect population dynamics in patchy or metapopulation landscapes. Basic systematic studies of the host remain crucial to successful biocontrol, especially of hybrid weeds like L. camara. Potential biocontrol agents should be monophages collected from the most closely related species to the target weed or be phytophages that attack several species of lantana. Suitable agents should be released in the most ideal ecoclimatic area. Since collection of biocontrol agents has been limited to a fraction of the known number of phytophagous species available, biocontrol may be improved by targeting insects that feed on stems and roots, as well as the agents that feed on leaves and flowers.
Resumo:
In this paper, we discuss the measurements of spectral surface reflectance (rho(s)(lambda)) in the wavelength range 350-2500 nm measured using a spectroradiometer onboard a low-flying aircraft over Bangalore (12.95 degrees N, 77.65 degrees E), an urban site in southern India. The large discrepancies in the retrieval of aerosol propertiesover land by the Moderate-Resolution Imaging Spectroradiometer (MODIS), which could be attributed to the inaccurate estimation of surface reflectance at many sites in India and elsewhere, provided motivation for this paper. The aim of this paper was to verify the surface reflectance relationships assumed by the MODIS aerosol algorithm for the estimation of surface reflectance in the visible channels (470 and 660 nm) from the surface reflectance at 2100 nm for aerosol retrieval over land. The variety of surfaces observed in this paper includes green and dry vegetations, bare land, and urban surfaces. The measuredreflectance data were first corrected for the radiative effects of atmosphere lying between the ground and aircraft using the Second Simulation of Satellite Signal in the Solar Spectrum (6S) radiative transfer code. The corrected surface reflectance in the MODIS's blue (rho(s)(470)), red (rho(s)(660)), and shortwave-infrared (SWIR) channel (rho(s)(2100)) was linearly correlated. We found that the slope of reflectance relationship between 660 and 2100 nm derived from the forward scattering data was 0.53 with an intercept of 0.07, whereas the slope for the relationship between the reflectance at 470 and 660 nm was 0.85. These values are much higher than the slope (similar to 0.49) for either wavelengths assumed by the MODIS aerosol algorithm over this region. The reflectance relationship for the backward scattering data has a slope of 0.39, with an intercept of 0.08 for 660 nm, and 0.65, with an intercept of 0.08 for 470 nm. The large values of the intercept (which is very small in the MODIS reflectance relationships) result in larger values of absolute surface reflectance in the visible channels. The discrepancy between the measured and assumed surface reflectances could lead to error in the aerosol retrieval. The reflectance ratio (rho(s)(660)/rho(s)(2100)) showed a clear dependence on the N D V I-SWIR where the ratio increased from 0.5 to 1 with an increase in N V I-SWIR from 0 to 0.5. The high correlation between the reflectance at SWIR wavelengths (2100, 1640, and 1240 nm) indicated an opportunity to derive the surface reflectance and, possibly, aerosol properties at these wavelengths. We need more experiments to characterize the surface reflectance and associated inhomogeneity of land surfaces, which play a critical role in the remote sensing of aerosols over land.
Resumo:
The Burdekin Rangelands is a diverse area of semi-arid eucalypt and acacia savannah covering six million hectares in north eastern Australia. The major land use is cattle grazing on 220 commercial cattle properties (average size 26,000 ha) each carrying on average 2600 adult equivalents. Production was the focus of the beef industry and support agencies prior to the mid 1980's. Widespread land degradation during the 1980's led to a grassroots realisation that environmental impacts, including water quality had to be addressed for the beef industry to attain sustainability. The formation of a series of producer based landcare gropus and the support of several Queensland and Australian government research and extension agencies led to a greater awareness and adoption of sound grazing land management practices (Shepherd 2005).
Resumo:
The Cape York Peninsula Land Use Strategy (CYPLUS) is a joint Queensland/Commonwealth initiative to provide a framework for making decisions about how to use and manage the natural resources of Cape York Peninsula in ways that will be ecologically sustainable. As part of the Natural Resources Analysis Program (NRAP) of CYPLUS, the Fisheries Division of the Queensland Department of Primary Industries has mapped the marine vegetation (mangroves and seagrasses) for Cape York Peninsula. The project ran from July 1992 to June 1994. Field work was undertaken in November 1992, May 1993, and April 1994. Final report on project: NRO6 – Marine Plan (Seagrass/Mangrove) Distribution. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]
Resumo:
Summary Poor land condition resulting from unsustainable grazing practices can reduce enterprise profitability and increase water, sediment and associated nutrient runoff from properties and catchments. This paper presents the results of a 6 year field study that used a series of hillslope flume experiments to evaluate the impact of improved grazing land management (GLM) on hillslope runoff and sediment yields. The study was carried out on a commercial grazing property in a catchment draining to the Burdekin River in northern Australia. During this study average ground cover on hillslopes increased from ~35% to ~75%, although average biomass and litter levels are still relatively low for this landscape type (~60 increasing to 1100 kg of dry matter per hectare). Pasture recovery was greatest on the upper and middle parts of hillslopes. Areas that did not respond to the improved grazing management had <10% cover and were on the lower slopes associated with the location of sodic soil and the initiation of gullies. Comparison of ground cover changes and soil conditions with adjacent properties suggest that grazing management, and not just improved rainfall conditions, were responsible for the improvements in ground cover in this study. The ground cover improvements resulted in progressively lower runoff coefficients for the first event in each wet season, however, runoff coefficients were not reduced at the annual time scale. The hillslope annual sediment yields declined by ~70% on two out of three hillslopes, although where bare patches (with <10% cover) were connected to gullies and streams, annual sediment yields increased in response to higher rainfall in latter years of the study. It appears that bare patches are the primary source areas for both runoff and erosion on these hillslopes. Achieving further reductions in runoff and erosion in these landscapes may require management practices that improve ground cover and biomass in bare areas, particularly when they are located adjacent to concentrated drainage lines.