868 resultados para Lagrangian bounds in optimization problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the linear equality-constrained least squares problem (LSE) of minimizing ${\|c - Gx\|}_2 $, subject to the constraint $Ex = p$. A preconditioned conjugate gradient method is applied to the Kuhn–Tucker equations associated with the LSE problem. We show that our method is well suited for structural optimization problems in reliability analysis and optimal design. Numerical tests are performed on an Alliant FX/8 multiprocessor and a Cray-X-MP using some practical structural analysis data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study is made of the zonal-mean motions induced by a growing baroclinic wave in several contexts, under the framework of three different analysis schemes: the conventional Eulerian mean (EM), the transformed Eulerian mean (TEM), and the generalized Lagrangian mean (GLM). The effect of meridional shear in the initial jet on these induced mean motions is considered by treating the instability problem in the context of the two-layer model. The conceptual simplicity of the TEM formulation is shown to be useful in diagnosing the dynamics of instability, much as it has been found helpful in many problems of wave, mean-flow interaction. In addition, it is found that the TEM vertical velocity is a very good indicator of the GLM vertical velocity. However, the GLM meridional velocity is always convergent towards the centre of instability activity, and is not at all well represented by the nondivergent TEM meridional velocity. In comparing the results with Uryu's (1979) calculation of the GLM circulation induced by a growing Eady wave, it is found that the inclusion of meridional jet shear in the present work leads to some strikingly different effects in the GLM zonal wind acceleration. In the case of pure baroclinic instability treated by Uryu, the Eulerian and Stokes accelerations nearly cancel each other in the centre of the channel, leaving a weak Lagrangian acceleration opposed to the Eulerian one. In the more general case of mixed baroclinic-barotropic instability, however, the Eulerian and Stokes accelerations can reinforce one another, leading to a very strong Lagrangian zonal wind

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mixed integer continuous nonlinear model and a solution method for the problem of orthogonally packing identical rectangles within an arbitrary convex region are introduced in the present work. The convex region is assumed to be made of an isotropic material in such a way that arbitrary rotations of the items, preserving the orthogonality constraint, are allowed. The solution method is based on a combination of branch and bound and active-set strategies for bound-constrained minimization of smooth functions. Numerical results show the reliability of the presented approach. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the epsilon(k)-global minimization of the Augmented Lagrangian with simple constraints, where epsilon(k) -> epsilon. Global convergence to an epsilon-global minimizer of the original problem is proved. The subproblems are solved using the alpha BB method. Numerical experiments are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a(0) + a(1)x(1) + ... + a(n)x(n) subject to certain constraints to solve the problem of minimizing a rational function of the form (a(0) + a(1)x(1) + ... + a(n)x(n))/(b(0) + b(1)x(1) + ... + b(n)x(n)) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo`s result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo`s result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an alpha-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an alpha-approximation (1 1/alpha-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation is focused on theoretical and experimental studies of optical properties of materials and multilayer structures composing liquid crystal displays (LCDs) and electrochromic (EC) devices. By applying spectroscopic ellipsometry, we have determined the optical constants of thin films of electrochromic tungsten oxide (WOx) and nickel oxide (NiOy), the films’ thickness and roughness. These films, which were obtained at spattering conditions possess high transmittance that is important for achieving good visibility and high contrast in an EC device. Another application of the general spectroscopic ellipsometry relates to the study of a photo-alignment layer of a mixture of azo-dyes SD-1 and SDA-2. We have found the optical constants of this mixture before and after illuminating it by polarized UV light. The results obtained confirm the diffusion model to explain the formation of the photo-induced order in azo-dye films. We have developed new techniques for fast characterization of twisted nematic LC cells in transmissive and reflective modes. Our techniques are based on the characteristics functions that we have introduced for determination of parameters of non-uniform birefringent media. These characteristic functions are found by simple procedures and can be utilised for simultaneous determination of retardation, its wavelength dispersion, and twist angle, as well as for solving associated optimization problems. Cholesteric LCD that possesses some unique properties, such as bistability and good selective scattering, however, has a disadvantage – relatively high driving voltage (tens of volts). The way we propose to reduce the driving voltage consists of applying a stack of thin (~1µm) LC layers. We have studied the ability of a layer of a surface stabilized ferroelectric liquid crystal coupled with several retardation plates for birefringent color generation. We have demonstrated that in order to accomplish good color characteristics and high brightness of the display, one or two retardation plates are sufficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article explores the conceptual complexity and apparent contradictions in the language of mathematics and suggests ways to handle these problems. Mathematics, as described the author, is a formal, artificially constructed language. One problem arises from the changes of gradient and rates of change of gradient, continuous functions. Conceptual conflicts also arise when least upperbounds and greatest lower-bounds in discussing sequences and series, convergence and limits are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction intervals (PIs) are excellent tools for quantification of uncertainties associated with point forecasts and predictions. This paper adopts and develops the lower upper bound estimation (LUBE) method for construction of PIs using neural network (NN) models. This method is fast and simple and does not require calculation of heavy matrices, as required by traditional methods. Besides, it makes no assumption about the data distribution. A new width-based index is proposed to quantitatively check how much PIs are informative. Using this measure and the coverage probability of PIs, a multi-objective optimization problem is formulated to train NN models in the LUBE method. The optimization problem is then transformed into a training problem through definition of a PI-based cost function. Particle swarm optimization (PSO) with the mutation operator is used to minimize the cost function. Experiments with synthetic and real-world case studies indicate that the proposed PSO-based LUBE method can construct higher quality PIs in a simpler and faster manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making decision usually occurs in the state of being uncertain. These kinds of problems often expresses in a formula as optimization problems. It is desire for decision makers to find a solution for optimization problems. Typically, solving optimization problems in uncertain environment is difficult. This paper proposes a new hybrid intelligent algorithm to solve a kind of stochastic optimization i.e. dependent chance programming (DCP) model. In order to speed up the solution process, we used support vector machine regression (SVM regression) to approximate chance functions which is the probability of a sequence of uncertain event occurs based on the training data generated by the stochastic simulation. The proposed algorithm consists of three steps: (1) generate data to estimate the objective function, (2) utilize SVM regression to reveal a trend hidden in the data (3) apply genetic algorithm (GA) based on SVM regression to obtain an estimation for the chance function. Numerical example is presented to show the ability of algorithm in terms of time-consuming and precision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cuckoo search (CS) is a relatively new meta-heuristic that has proven its strength in solving continuous optimization problems. This papers applies cuckoo search to the class of sequencing problems by hybridizing it with a variable neighborhood descent local search for enhancing the quality of the obtained solutions. The Lévy flight operator proposed in the original CS is modified to address the discrete nature of scheduling problems. Two well-known problems are used to demonstrate the effectiveness of the proposed hybrid CS approach. The first is the NP-hard single objective problem of minimizing the weighted total tardiness time (Formula presented.) and the second is the multiobjective problem of minimizing the flowtime ¯ and the maximum tardiness Tmaxfor single machine (Formula presented.). For the first problem, computational results show that the hybrid CS is able to find the optimal solutions for all benchmark test instances with 40, 50, and 100 jobs and for most instances with 150, 200, 250, and 300 jobs. For the second problem, the hybrid CS generated solutions on and very close to the exact Pareto fronts of test instances with 10, 20, 30, and 40 jobs. In general, the results reveal that the hybrid CS is an adequate and robust method for tackling single and multiobjective scheduling problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metaheuristic algorithm is one of the most popular methods in solving many optimization problems. This paper presents a new hybrid approach comprising of two natures inspired metaheuristic algorithms i.e. Cuckoo Search (CS) and Accelerated Particle Swarm Optimization (APSO) for training Artificial Neural Networks (ANN). In order to increase the probability of the egg’s survival, the cuckoo bird migrates by traversing more search space. It can successfully search better solutions by performing levy flight with APSO. In the proposed Hybrid Accelerated Cuckoo Particle Swarm Optimization (HACPSO) algorithm, the communication ability for the cuckoo birds have been provided by APSO, thus making cuckoo bird capable of searching for the best nest with better solution. Experimental results are carried-out on benchmarked datasets, and the performance of the proposed hybrid algorithm is compared with Artificial Bee Colony (ABC) and similar hybrid variants. The results show that the proposed HACPSO algorithm performs better than other algorithms in terms of convergence and accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic search techniques such as evolutionary algorithms (EA) are known to be better explorer of search space as compared to conventional techniques including deterministic methods. However, in the era of big data like most other search methods and learning algorithms, suitability of evolutionary algorithms is naturally questioned. Big data pose new computational challenges including very high dimensionality and sparseness of data. Evolutionary algorithms' superior exploration skills should make them promising candidates for handling optimization problems involving big data. High dimensional problems introduce added complexity to the search space. However, EAs need to be enhanced to ensure that majority of the potential winner solutions gets the chance to survive and mature. In this paper we present an evolutionary algorithm with enhanced ability to deal with the problems of high dimensionality and sparseness of data. In addition to an informed exploration of the solution space, this technique balances exploration and exploitation using a hierarchical multi-population approach. The proposed model uses informed genetic operators to introduce diversity by expanding the scope of search process at the expense of redundant less promising members of the population. Next phase of the algorithm attempts to deal with the problem of high dimensionality by ensuring broader and more exhaustive search and preventing premature death of potential solutions. To achieve this, in addition to the above exploration controlling mechanism, a multi-tier hierarchical architecture is employed, where, in separate layers, the less fit isolated individuals evolve in dynamic sub-populations that coexist alongside the original or main population. Evaluation of the proposed technique on well known benchmark problems ascertains its superior performance. The algorithm has also been successfully applied to a real world problem of financial portfolio management. Although the proposed method cannot be considered big data-ready, it is certainly a move in the right direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several works in the shopping-time and in the human-capital literature, due to the nonconcavity of the underlying Hamiltonian, use Örst-order conditions in dynamic optimization to characterize necessity, but not su¢ ciency, in intertemporal problems. In this work I choose one paper in each one of these two areas and show that optimality can be characterized by means of a simple aplication of Arrowís (1968) su¢ ciency theorem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss a general approach to building non-asymptotic confidence bounds for stochastic optimization problems. Our principal contribution is the observation that a Sample Average Approximation of a problem supplies upper and lower bounds for the optimal value of the problem which are essentially better than the quality of the corresponding optimal solutions. At the same time, such bounds are more reliable than “standard” confidence bounds obtained through the asymptotic approach. We also discuss bounding the optimal value of MinMax Stochastic Optimization and stochastically constrained problems. We conclude with a small simulation study illustrating the numerical behavior of the proposed bounds.