567 resultados para LECTIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial cells of different phenotypes derived from bovine corpus luteum have been studied intensively in our laboratory. In this study, specific lectin binding was examined for cells of type 1 and 3, which were defined as endothelial cells. In order to confirm differences in their glycocalyx at the light microscopic level, five biotinylated lectins were applied to postconfluent cultures which had been fixed with buffered paraformaldehyde or glutaraldehyde. Cells were not permeabilized with any detergent. Lectin binding was localized with a streptavidin-peroxidase complex which was visualized with two different techniques. The DAB technique detected peroxidase histochemically, while the immunogold technique used an anti-peroxidase gold complex together with silver amplification. Neither cell type 1 nor cell type 3 bound a particular lectin selectively, yet each cell type expressed a particular lectin binding pattern. With the DAB technique, diverse lectin binding patterns were seen, probably indicating either "outside" binding, i.e., a diffuse pattern, a lateral-cell-side pattern and a microvillus-like pattern, or "inside" binding, i.e., a diffuse pattern, and a granule-like pattern. With the immunogold technique, only "outside" binding was observed. In addition, the patterns of single cilia or of single circles were detected, the latter roughly representing 3-micron-sized binding sites for concanavalin A. When localizing them at the ultrastructural level, single circles corresponded with micron-sized discontinuities of the plasma membrane. Shedding vesicles were detected whose outer membrane was labelled with concanavalin A. Our results confirm the diversity of the two cell types under study. The "inside" lectin binding may be caused by way of transient plasma membrane openings and related to shedding of right-side out vesicles ("ectocytosis").

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND  Sepsis is an increasingly common condition, which continues to be associated with unacceptably high mortality. A large number of association studies have investigated susceptibility to, or mortality from, sepsis for variants in the functionally important immune-related gene MBL2. These studies have largely been underpowered and contradictory. METHODS  We genotyped and analyzed 4 important MBL2 single nucleotide polymorphisms (SNPs; rs5030737, rs1800450, rs1800451, and rs7096206) in 1839 European community-acquired pneumonia (CAP) and peritonitis sepsis cases, and 477 controls from the United Kingdom. We analyzed the following predefined subgroups and outcomes: 28-day and 6 month mortality from sepsis due to CAP or peritonitis combined, 28-day mortality from CAP sepsis, peritonitis sepsis, pneumococcal sepsis or sepsis in younger patients, and susceptibility to CAP sepsis or pneumococcal sepsis in the United Kingdom. RESULTS  There were no significant associations (all P-values were greater than .05 after correction for multiple testing) between MBL2 genotypes and any of our predefined analyses. CONCLUSIONS  In this large, well-defined cohort of immune competent adult patients, no associations between MBL2 genotype and sepsis susceptibility or outcome were identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multivalent galactosides inhibiting Pseudomonas aeruginosa biofilms may help control this problematic pathogen. To understand the binding mode of tetravalent glycopeptide dendrimer GalAG2 [(Gal-β-OC6H4CO-Lys-Pro-Leu)4(Lys-Phe-Lys-Ile)2Lys-His-Ile-NH2] to its target lectin LecA, crystal structures of LecA complexes with divalent analog GalAG1 [(Gal-β-OC6H4CO-Lys-Pro-Leu)2Lys-Phe-Lys-Ile-NH2] and related glucose-triazole linked bis-galactosides 3u3 [Gal-β-O(CH2)n-(C2HN3)-4-Glc-β-(C2HN3)-[β-Glc-4-(N3HC2)]2-(CH2)n-O-β-Gal (n = 1)] and 5u3 (n = 3) were obtained, revealing a chelate bound 3u3, cross-linked 5u3, and monovalently bound GalAG1. Nevertheless, a chelate bound model better explaining their strong LecA binding and the absence of lectin aggregation was obtained by modeling for all three ligands. A model of the chelate bound GalAG2·LecA complex was also obtained rationalizing its unusually tight LecA binding (KD = 2.5 nM) and aggregation by lectin cross-linking. The very weak biofilm inhibition with divalent LecA inhibitors suggests that lectin aggregation is necessary for biofilm inhibition by GalAG2, pointing to multivalent glycoclusters as a unique opportunity to control P. aeruginosa biofilms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The galactose specific lectin LecA partly mediates the formation of antibiotic resistant biofilms by Pseudomonas aeruginosa, an opportunistic pathogen causing lethal airways infections in immunocompromised and cystic fibrosis patients, suggesting that preventing LecA binding to natural saccharides might provide new opportunities for treatment. Here 8-fold (G3) and 16-fold (G4) galactosylated analogs of GalAG2, a tetravalent G2 glycopeptide dendrimer LecA ligand and P. aeruginosa biofilm inhibitor, were obtained by convergent chloroacetyl thioether (ClAc) ligation between 4-fold or 8-fold chloroacetylated dendrimer cores and digalactosylated dendritic arms. Hemagglutination inhibition, isothermal titration calorimetry and biofilm inhibition assays showed that G3 dendrimers bind LecA slightly better than their parent G2 dendrimers and induce complete biofilm inhibition and dispersal of P. aeruginosa biofilms, while G4 dendrimers show reduced binding and no biofilm inhibition. A binding model accounting for the observed saturation of glycopeptide dendrimer galactosyl groups and LecA binding sites is proposed based on the crystal structure of a G3 dendrimer LecA complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Human studies on the role of mannose-binding lectin (MBL) in patients with invasive candidiasis have yielded conflicting results. We investigated the influence of MBL and other lectin pathway proteins on Candida colonization and intra-abdominal candidiasis (IAC) in a cohort of high-risk patients. METHODS Prospective observational cohort study of 89 high-risk intensive-care unit (ICU) patients. Levels of lectin pathway proteins at study entry and six MBL2 single-nucleotide polymorphisms were analyzed by sandwich-type immunoassays and genotyping, respectively, and correlated with development of heavy Candida colonization (corrected colonization index (CCI) ≥0.4) and occurrence of IAC during a 4-week period. RESULTS Within 4 weeks after inclusion a CCI ≥0.4 and IAC was observed in 47% and 38% of patients respectively. Neither serum levels of MBL, ficolin-1, -2, -3, MASP-2 or collectin liver 1 nor MBL2 genotypes were associated with a CCI ≥0.4. Similarly, none of the analyzed proteins was found to be associated with IAC with the exception of lower MBL levels (HR 0.74, p = 0.02) at study entry. However, there was no association of MBL deficiency (<0.5 μg/ml), MBL2 haplo- or genotypes with IAC. CONCLUSION Lectin pathway protein levels and MBL2 genotype investigated in this study were not associated with heavy Candida colonization or IAC in a cohort of high-risk ICU patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA duplexes containing unnatural base-pair surrogates are attractive biomolecular nanomaterials with potentially beneficial photophysical or electronic properties. Herein we report the first X-ray structure of a duplex containing a phen-pair in the center of the double helix in a zipper like stacking arrangement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candida albicans causes opportunistic fungal infections in humans and is a significant cause of mortality and morbidity in immune-compromised individuals. Dectin-2, a C-type lectin receptor, is required for recognition of C. albicans by innate immune cells and is required for initiation of the anti-fungal immune response. We set out to identify components of the intracellular signaling cascade downstream of Dectin-2 activation in macrophages and to understand their importance in mediating the immune response to C. albicans in vivo. Using macrophages derived from Phospholipase-C-gamma 1 and 2 (PLCγ1and PLCγ2) knockout mice, we demonstrate that PLCγ2, but not PLCγ1, is required for activation of NF-κB and MAPK signaling pathways after C. albicans stimulation, resulting in impaired production of pro-inflammatory cytokines and reactive oxygen species. PLCγ2-deficient mice are highly susceptible to infections with C. albicans, indicating the importance of this pathway to the anti-fungal immune response. TAK1 and TRAF6 are critical nodes in NF-κB and MAPK activation downstream of immune surveillance and may be critical to the signaling cascade initiated by C-type lectin receptors in response to C. albicans. Macrophages derived from both TAK1 and TRAF6-deficient mice were unable to activate NF-κB and MAPK and consequently failed to produce inflammatory cytokines characteristic of the response to C. albicans. In this work we have identified PLCγ2, TAK1 and TRAF6 as components of a signaling cascade downstream of C. albicans recognition by C-type lectin receptors and as critical mediators of the anti-fungal immune response. A mechanistic understanding of the host immune response to C. albicans is important for the development of anti-fungal therapeutics and in understanding risk-factors determining susceptibility to C. albicans infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD22 is a B cell-restricted glycoprotein involved in signal transduction and modulation of cellular activation. It is also an I-type lectin (now designated Siglec-2), whose extracellular domain can specifically recognize α2–6-linked sialic acid (Sia) residues. This activity is postulated to mediate intercellular adhesion and/or to act as a coreceptor in antigen-induced B cell activation. However, studies with recombinant CD22 indicate that the lectin function can be inactivated by expression of α2–6-linked Sia residues on the same cell surface. To explore whether this masking phenomenon affects native CD22 on B cells, we first developed a probe to detect the lectin activity of recombinant CD22 expressed on Chinese hamster ovary cells (which have no endogenous α2–6-linked Sia residues). This probe is inactive against CD22-positive B lymphoma cells and Epstein–Barr virus-transformed lymphoblasts which express high levels of α2–6-linked Sia residues. Enzymatic desialylation unmasks the CD22 lectin activity, indicating that endogenous Sia residues block the CD22 lectin-binding site. Truncation of the side chains of cell surface Sia residues by mild periodate oxidation (known to abrogate Sia recognition by CD22) also had this unmasking effect, indicating that the effects of desialylation are not due to a loss of negative charge. Normal resting B cells from human peripheral blood gave similar findings. However, the lectin is partially unmasked during in vitro activation of these cells. Thus, the lectin activity of CD22 is restricted by endogenous sialylation in resting B cells and may be transiently unmasked during in vivo activation, perhaps to modulate intercellular or intracellular interactions at this critical stage in the humoral response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lecticans are a family of chondroitin sulfate proteoglycans including aggrecan, versican, neurocan, and brevican. The C-terminal globular domains of lecticans are structurally related to selectins, consisting of a C-type lectin domain flanked by epidermal growth factor and complement regulatory protein domains. The C-type lectin domain of versican has been shown to bind tenascin-R, an extracellular matrix protein specifically expressed in the nervous system, and the interaction was presumed to be mediated by a carbohydrate–protein interaction. In this paper, we show that the C-type lectin domain of brevican, another lectican that is specifically expressed in the nervous system, also binds tenascin-R. Surprisingly, this interaction is mediated by a protein–protein interaction through the fibronectin type III domains 3–5 of tenascin-R, independent of any carbohydrates or sulfated amino acids. The lectin domains of versican and other lecticans also bind the same domain of tenascin-R by protein–protein interactions. Surface plasmon resonance analysis revealed that brevican lectin has at least a 10-fold higher affinity than the other lectican lectins. Tenascin-R is coprecipitated with brevican from adult rat brain extracts, suggesting that tenascin-R and brevican form complexes in vivo. These results demonstrate that the C-type lectin domain can interact with fibronectin type III domains through protein–protein interactions, and suggest that brevican is a physiological tenascin-R ligand in the adult brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Griffonia simplicifolia leaf lectin II (GSII), a plant defense protein against certain insects, consists of an N-acetylglucosamine (GlcNAc)-binding large subunit with a small subunit having sequence homology to class III chitinases. Much of the insecticidal activity of GSII is attributable to the large lectin subunit, because bacterially expressed recombinant large subunit (rGSII) inhibited growth and development of the cowpea bruchid, Callosobruchus maculatus (F). Site-specific mutations were introduced into rGSII to generate proteins with altered GlcNAc binding, and the different rGSII proteins were evaluated for insecticidal activity when added to the diet of the cowpea bruchid. At pH 5.5, close to the physiological pH of the cowpea bruchid midgut lumen, rGSII recombinant proteins were categorized as having high (rGSII, rGSII-Y134F, and rGSII-N196D mutant proteins), low (rGSII-N136D), or no (rGSII-D88N, rGSII-Y134G, rGSII-Y134D, and rGSII-N136Q) GlcNAc-binding activity. Insecticidal activity of the recombinant proteins correlated with their GlcNAc-binding activity. Furthermore, insecticidal activity correlated with the resistance to proteolytic degradation by cowpea bruchid midgut extracts and with GlcNAc-specific binding to the insect digestive tract. Together, these results establish that insecticidal activity of GSII is functionally linked to carbohydrate binding, presumably to the midgut epithelium or the peritrophic matrix, and to biochemical stability of the protein to digestive proteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma cruzi is a protozoan parasite that belongs to an early branch in evolution. Although it lacks several features of the pathway of protein N-glycosylation and oligosaccharide processing present in the endoplasmic reticulum of higher eukaryotes, it displays UDP-Glc:glycoprotein glucosyltransferase and glucosidase II activities. It is herewith reported that this protozoan also expresses a calreticulin-like molecule, the third component of the quality control of glycoprotein folding. No calnexin-encoding gene was detected. Recombinant T. cruzi calreticulin specifically recognized free monoglucosylated high-mannose-type oligosaccharides. Addition of anti-calreticulin serum to extracts obtained from cells pulse–chased with [35S]Met plus [35S]Cys immunoprecipitated two proteins that were identified as calreticulin and the lysosomal proteinase cruzipain (a major soluble glycoprotein). The latter but not the former protein disappeared from immunoprecipitates upon chasing cells. Contrary to what happens in mammalian cells, addition of the glucosidase II inhibitor 1-deoxynojirimycin promoted calreticulin–cruzipain interaction. This result is consistent with the known pathway of protein N-glycosylation and oligosaccharide processing occurring in T. cruzi. A treatment of the calreticulin-cruzipain complexes with endo-β-N-acetylglucosaminidase H either before or after addition of anti-calreticulin serum completely disrupted calreticulin–cruzipain interaction. In addition, mature monoglucosylated but not unglucosylated cruzipain isolated from lysosomes was found to interact with recombinant calreticulin. It was concluded that the quality control of glycoprotein folding appeared early in evolution, and that T. cruzi calreticulin binds monoglucosylated oligosaccharides but not the protein moiety of cruzipain. Furthermore, evidence is presented indicating that glucosyltransferase glucosylated cruzipain at its last folding stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Killing of human cells by the parasite Entamoeba histolytica requires adherence via an amebic cell surface lectin. Lectin activity in the parasite is regulated by inside-out signaling. The lectin cytoplasmic domain has sequence identity with a region of the β2 integrin cytoplasmic tail implicated in regulation of integrin-mediated adhesion. Intracellular expression of a fusion protein containing the cytoplasmic domain of the lectin has a dominant negative effect on extracellular lectin-mediated cell adherence. Mutation of the integrin-like sequence abrogates the dominant negative effect. Amebae expressing the dominant negative mutant are less virulent in an animal model of amebiasis. These results suggest that inside-out signaling via the lectin cytoplasmic domain may control the extracellular adhesive activity of the amebic lectin and provide in vivo demonstration of the lectin’s role in virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One crucial role of endothelium is to keep the innermost surface of a blood vessel antithrombotic. However, the endothelium also expresses prothrombotic molecules in response to various stimuli. The balance between the antithrombotic and prothrombotic nature of the endothelium is lost under certain conditions. During atherosclerosis, the attachment of platelets to the vessel surface has been suggested to promote the proliferation of smooth muscle cells and intimal thickening as well as to affect the prognosis of the disease directly through myocardial infarction and stroke. Dysfunctional endothelium, which is often a result of the action of oxidized low-density lipoprotein (OxLDL), tends to be more procoagulant and adhesive to platelets. Herein, we sought the possibility that the endothelial lectin-like OxLDL receptor-1 (LOX-1) is involved in the platelet–endothelium interaction and hence directly in endothelial dysfunction. LOX-1 indeed worked as an adhesion molecule for platelets. The binding of platelets was inhibited by a phosphatidylserine-binding protein, annexin V, and enhanced by agonists for platelets. These results suggest that negative phospholipids exposed on activation on the surface of platelets are the epitopes for LOX-1. Notably, the binding of platelets to LOX-1 enhanced the release of endothelin-1 from endothelial cells, supporting the induction of endothelial dysfunction, which would, in turn, promote the atherogenic process. LOX-1 may initiate and promote atherosclerosis, binding not only OxLDL but also platelets.