891 resultados para Knowledge-Based Systems
Resumo:
Electrocardiography (ECG) has been recently proposed as biometric trait for identification purposes. Intra-individual variations of ECG might affect identification performance. These variations are mainly due to Heart Rate Variability (HRV). In particular, HRV causes changes in the QT intervals along the ECG waveforms. This work is aimed at analysing the influence of seven QT interval correction methods (based on population models) on the performance of ECG-fiducial-based identification systems. In addition, we have also considered the influence of training set size, classifier, classifier ensemble as well as the number of consecutive heartbeats in a majority voting scheme. The ECG signals used in this study were collected from thirty-nine subjects within the Physionet open access database. Public domain software was used for fiducial points detection. Results suggested that QT correction is indeed required to improve the performance. However, there is no clear choice among the seven explored approaches for QT correction (identification rate between 0.97 and 0.99). MultiLayer Perceptron and Support Vector Machine seemed to have better generalization capabilities, in terms of classification performance, with respect to Decision Tree-based classifiers. No such strong influence of the training-set size and the number of consecutive heartbeats has been observed on the majority voting scheme.
Resumo:
The paper presents an approach to extraction of facts from texts of documents. This approach is based on using knowledge about the subject domain, specialized dictionary and the schemes of facts that describe fact structures taking into consideration both semantic and syntactic compatibility of elements of facts. Actually extracted facts combine into one structure the dictionary lexical objects found in the text and match them against concepts of subject domain ontology.
Resumo:
* Under Knowledge Infrastructure we imply all the means that enable effective knowledge management within organization ~ knowledge process support.
Resumo:
Within the framework of heritage preservation, 3D scanning and modeling for heritage documentation has increased significantly in recent years, mainly due to the evolution of laser and image-based techniques, modeling software, powerful computers and virtual reality. 3D laser acquisition constitutes a real development opportunity for 3D modeling based previously on theoretical data. The representation of the object information rely on the knowledge of its historic and theoretical frame to reconstitute a posteriori its previous states. This project proposes an approach dealing with data extraction based on architectural knowledge and Laser statement informing measurements, the whole leading to 3D reconstruction. The experimented Khmer objects are exposed at Guimet museum in Paris. The purpose of this digital modeling meets the need of exploitable models for simulation projects, prototyping, exhibitions, promoting cultural tourism and particularly for archiving against any likely disaster and as an aided tool for the formulation of virtual museum concept.
Resumo:
Motivation: Influenza A viral heterogeneity remains a significant threat due to unpredictable antigenic drift in seasonal influenza and antigenic shifts caused by the emergence of novel subtypes. Annual review of multivalent influenza vaccines targets strains of influenza A and B likely to be predominant in future influenza seasons. This does not induce broad, cross protective immunity against emergent subtypes. Better strategies are needed to prevent future pandemics. Cross-protection can be achieved by activating CD8+ and CD4+ T cells against highly-conserved regions of the influenza genome. We combine available experimental data with informatics-based immunological predictions to help design vaccines potentially able to induce cross-protective T-cells against multiple influenza subtypes. Results: To exemplify our approach we designed two epitope ensemble vaccines comprising highly-conserved and experimentally-verified immunogenic influenza A epitopes as putative non-seasonal influenza vaccines; one specifically targets the US population and the other is a universal vaccine. The USA-specific vaccine comprised 6 CD8+ T cell epitopes (GILGFVFTL, FMYSDFHFI, GMDPRMCSL, SVKEKDMTK, FYIQMCTEL, DTVNRTHQY) and 3 CD4+ epitopes (KGILGFVFTLTVPSE, EYIMKGVYINTALLN, ILGFVFTLTVPSERG). The universal vaccine comprised 8 CD8+ epitopes: (FMYSDFHFI, GILGFVFTL, ILRGSVAHK, FYIQMCTEL, ILKGKFQTA, YYLEKANKI, VSDGGPNLY, YSHGTGTGY) and the same 3 CD4+ epitopes. Our USA-specific vaccine has a population protection coverage (portion of the population potentially responsive to one or more component epitopes of the vaccine, PPC) of over 96% and 95% coverage of observed influenza subtypes. The universal vaccine has a PPC value of over 97% and 88% coverage of observed subtypes.
Resumo:
Organizations are increasingly relying on teams to do the work that has traditionally been done by individuals. At the same time, the environments in which these organizations and teams operate have been becoming progressively more complex and uncertain. These trends raise important questions about the factors that enable teams to adapt. In response to these questions, the current study sought to identify the cognitive, behavioral, and motivational processes and emergent states that promote a team's adaptation to unforeseen changes and novel events, and the team compositional characteristics and leadership processes that enabled these processes and emergent states. Two hundred twenty two undergraduate students from a large Southeastern University composed 74 3-person teams, and participated in a computerized decision-making simulation where each team formed the governing body (i.e., Mayor's cabinet) for two separate simulated cities, and made strategic decisions about city operations. Participants were randomly assigned to one of three roles, distributing expertise and creating mutual interdependence. External team leader sensegiving was manipulated through video recorded communications from an external team leader. Results indicate that team cognitive ability, achievement striving, and psychological collectivism, as well as external team leader sensegiving, were all related to the similarity and quality of team members' strategy-focused mental models (cognitive emergent states), and to the amount of information sharing among members (behavioral process). In turn, teams with more similar and higher quality mental models, and who shared greater levels of information, were found to have a greater ability to react and adapt to environmental changes, and to have greater levels of decision-making effectiveness. Results indicate a pattern of relationships consistent with hypotheses, and have important implications for organizations and knowledge-based teams charged with management responsibilities. Organizations should staff teams with the compositional characteristics that enable the development of similar and high quality mental models, and that promote information sharing among teammates. Similarly, organizations which train and develop leaders to engage in sensegiving behaviors enable team adaptability and promote enhanced decision-making effectiveness when faced with unforeseen changes and novel situations.
Resumo:
In the current age of fast-depleting conventional energy sources, top priority is given to exploring non-conventional energy sources, designing highly efficient energy storage systems and converting existing machines/instruments/devices into energy-efficient ones. ‘Energy efficiency’ is one of the important challenges for today’s scientific and research community, worldwide. In line with this demand, the current research was focused on developing two highly energy-efficient devices – field emitters and Li-ion batteries, using beneficial properties of carbon nanotubes (CNT). Interface-engineered, directly grown CNTs were used as cathode in field emitters, while similar structure was applied as anode in Li-ion batteries. Interface engineering was found to offer minimum resistance to electron flow and strong bonding with the substrate. Both field emitters and Li-ion battery anodes were benefitted from these advantages, demonstrating high energy efficiency. Field emitter, developed during this research, could be characterized by low turn-on field, high emission current, very high field enhancement factor and extremely good stability during long-run. Further, application of 3-dimensional design to these field emitters resulted in achieving one of the highest emission current densities reported so far. The 3-D field emitter registered 27 times increase in current density, as compared to their 2-D counterparts. These achievements were further followed by adding new functionalities, transparency and flexibility, to field emitters, keeping in view of current demand for flexible displays. A CNT-graphene hybrid structure showed appreciable emission, along with very good transparency and flexibility. Li-ion battery anodes, prepared using the interface-engineered CNTs, have offered 140% increment in capacity, as compared to conventional graphite anodes. Further, it has shown very good rate capability and an exceptional ‘zero capacity degradation’ during long cycle operation. Enhanced safety and charge transfer mechanism of this novel anode structure could be explained from structural characterization. In an attempt to progress further, CNTs were coated with ultrathin alumina by atomic layer deposition technique. These alumina-coated CNT anodes offered much higher capacity and an exceptional rate capability, with very low capacity degradation in higher current densities. These highly energy efficient CNT based anodes are expected to enhance capacities of future Li-ion batteries.
Resumo:
Purpose: This paper aims to explore the role of internal and external knowledgebased linkages across the supply chain in achieving better operational performance. It investigates how knowledge is accumulated, shared, and applied to create organization-specific knowledge resources that increase and sustain the organization's competitive advantage. Design/methodology/approach: This paper uses a single case study with multiple, embedded units of analysis, and the social network analysis (SNA) to demonstrate the impact of internal and external knowledge-based linkages across multiple tiers in the supply chain on the organizational operational performance. The focal company of the case study is an Italian manufacturer supplying rubber components to European automotive enterprises. Findings: With the aid of the SNA, the internal knowledge-based linkages can be mapped and visualized. We found that the most central nodes having the most connections with other nodes in the linkages are the most crucial members in terms of knowledge exploration and exploitation within the organization. We also revealed that the effective management of external knowledge-based linkages, such as buyer company, competitors, university, suppliers, and subcontractors, can help improve the operational performance. Research limitations/implications: First, our hypothesis was tested on a single case. The analysis of multiple case studies using SNA would provide a deeper understanding of the relationship between the knowledge-based linkages at all levels of the supply chain and the integration of knowledge. Second, the static nature of knowledge flows was studied in this research. Future research could also consider ongoing monitoring of dynamic linkages and the dynamic characteristic of knowledge flows. Originality/value: To the best of our knowledge, the phrase 'knowledge-based linkages' has not been used in the literature and there is lack of investigation on the relationship between the management of internal and external knowledge-based linkages and the operational performance. To bridge the knowledge gap, this paper will show the importance of understanding the composition and characteristics of knowledge-based linkages and their knowledge nodes. In addition, this paper will show that effective management of knowledge-based linkages leads to the creation of new knowledge and improves organizations' operational performance.
Resumo:
Purpose – This paper aims to contribute towards understanding how safety knowledge can be elicited from railway experts for the purposes of supporting effective decision-making. Design/methodology/approach – A consortium of safety experts from across the British railway industry is formed. Collaborative modelling of the knowledge domain is used as an approach to the elicitation of safety knowledge from experts. From this, a series of knowledge models is derived to inform decision-making. This is achieved by using Bayesian networks as a knowledge modelling scheme, underpinning a Safety Prognosis tool to serve meaningful prognostics information and visualise such information to predict safety violations. Findings – Collaborative modelling of safety-critical knowledge is a valid approach to knowledge elicitation and its sharing across the railway industry. This approach overcomes some of the key limitations of existing approaches to knowledge elicitation. Such models become an effective tool for prediction of safety cases by using railway data. This is demonstrated using passenger–train interaction safety data. Practical implications – This study contributes to practice in two main directions: by documenting an effective approach to knowledge elicitation and knowledge sharing, while also helping the transport industry to understand safety. Social implications – By supporting the railway industry in their efforts to understand safety, this research has the potential to benefit railway passengers, staff and communities in general, which is a priority for the transport sector. Originality/value – This research applies a knowledge elicitation approach to understanding safety based on collaborative modelling, which is a novel approach in the context of transport.
Resumo:
A gestão do conhecimento (GC) é uma das recentes abordagens da administração contemporânea, cujo foco engloba o conceito de conhecimento como recurso estratégico, sendo que suas técnicas, práticas e iniciativas gerenciais encontram-se em momento de consolidação. Muitos estudos acadêmicos sobre gestão do conhecimento estão sendo realizados no campo da Administração, com o objetivo de sistematizar os conceitos, as práticas e as contribuições para o poder de competição das empresas (NONAKA e TAKEUCHI, 1997; EISENHARDT e SANTOS, 2000; PROBST, RAUB e ROMHARDT, 2002; DALKIR, 2005). Esta pesquisa objetivou classificar as empresas do setor elétricoeletrônico brasileiro de acordo com o estágio de institucionalização da gestão do conhecimento, bem como verificar as contribuições das práticas de GC para seu poder competitivo. Foi realizado um survey a partir da listagem de 553 empresas elétricas e eletrônicas atuantes no Brasil e participantes da Associação Brasileira da Indústria Elétrica e Eletrônica (ABINEE), tendo sido averiguada uma amostra formada por 56 empresas respondentes. Os principais resultados encontrados foram: a) as empresas pesquisadas estão nos estágios iniciais de institucionalização de GC e b) as contribuições para o poder de competição, realizadas com adoção das práticas de GC, tinham como objetivo fortalecer a cultura de compartilhamento e disseminação do conhecimento, bem como, criar o ambiente favorável para o trabalho em equipe.
Resumo:
Food production and consumption for cities has become a global concern due to increasing numbers of people living in urban areas, threatening food security. There is the contention that people living in cities have become disconnected with food production, leading to reduced nutrition in diets and increased food waste. Integrating food production into cities (urban agriculture) can help alleviate some of these issues. Lack of space at ground level in high-density urban areas has accelerated the idea of using spare building surfaces for food production. There are various growing methods being used for food production on buildings, which can be split into two main types, soil-less systems and soil-based systems. This paper is a holistic assessment (underpinned by the triple bottom line of sustainable development) of these two types of systems for food production on buildings, looking at the benefits and limitation of each type in this context. The results illustrate that soil-less systems are more productive per square metre, which increases the amount of locally grown, fresh produce available in urban areas. The results also show that soil-based systems for cultivation on buildings are more environmentally and socially beneficial overall for urban areas than soil-less systems.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Authentication plays an important role in how we interact with computers, mobile devices, the web, etc. The idea of authentication is to uniquely identify a user before granting access to system privileges. For example, in recent years more corporate information and applications have been accessible via the Internet and Intranet. Many employees are working from remote locations and need access to secure corporate files. During this time, it is possible for malicious or unauthorized users to gain access to the system. For this reason, it is logical to have some mechanism in place to detect whether the logged-in user is the same user in control of the user's session. Therefore, highly secure authentication methods must be used. We posit that each of us is unique in our use of computer systems. It is this uniqueness that is leveraged to "continuously authenticate users" while they use web software. To monitor user behavior, n-gram models are used to capture user interactions with web-based software. This statistical language model essentially captures sequences and sub-sequences of user actions, their orderings, and temporal relationships that make them unique by providing a model of how each user typically behaves. Users are then continuously monitored during software operations. Large deviations from "normal behavior" can possibly indicate malicious or unintended behavior. This approach is implemented in a system called Intruder Detector (ID) that models user actions as embodied in web logs generated in response to a user's actions. User identification through web logs is cost-effective and non-intrusive. We perform experiments on a large fielded system with web logs of approximately 4000 users. For these experiments, we use two classification techniques; binary and multi-class classification. We evaluate model-specific differences of user behavior based on coarse-grain (i.e., role) and fine-grain (i.e., individual) analysis. A specific set of metrics are used to provide valuable insight into how each model performs. Intruder Detector achieves accurate results when identifying legitimate users and user types. This tool is also able to detect outliers in role-based user behavior with optimal performance. In addition to web applications, this continuous monitoring technique can be used with other user-based systems such as mobile devices and the analysis of network traffic.
Resumo:
In this paper, we present a case-based reasoning (CBR) approach solving educational time-tabling problems. Following the basic idea behind CBR, the solutions of previously solved problems are employed to aid finding the solutions for new problems. A list of feature-value pairs is insufficient to represent all the necessary information. We show that attribute graphs can represent more information and thus can help to retrieve re-usable cases that have similar structures to the new problems. The case base is organised as a decision tree to store the attribute graphs of solved problems hierarchically. An example is given to illustrate the retrieval, re-use and adaptation of structured cases. The results from our experiments show the effectiveness of the retrieval and adaptation in the proposed method.