882 resultados para Knowledge based system
Resumo:
This paper discusses the results and propositions of organizational knowledge management research conducted in the period 2001-2007. This longitudinal study had the unique goal of investigating and analyzing “Knowledge Management” (KM) processes effectively implemented in world class organizations. The main objective was to investigate and analyze the conceptions, motivations, practices, metrics and results of KM processes implemented in different industries. The first set of studies involved 20 world cases related in the literature and served as a basis for a theoretical framework entitled “KM Integrative Conceptual Mapping Proposition”. This theoretical proposal was then tested in a qualitative study in three large organizations in Brazil. The results of the qualitative study validated the mapping proposition and left questions for new research concerning the implementation of a knowledge-based organizational model strategy.
Resumo:
Motivation: Influenza A viral heterogeneity remains a significant threat due to unpredictable antigenic drift in seasonal influenza and antigenic shifts caused by the emergence of novel subtypes. Annual review of multivalent influenza vaccines targets strains of influenza A and B likely to be predominant in future influenza seasons. This does not induce broad, cross protective immunity against emergent subtypes. Better strategies are needed to prevent future pandemics. Cross-protection can be achieved by activating CD8+ and CD4+ T cells against highly-conserved regions of the influenza genome. We combine available experimental data with informatics-based immunological predictions to help design vaccines potentially able to induce cross-protective T-cells against multiple influenza subtypes. Results: To exemplify our approach we designed two epitope ensemble vaccines comprising highlyconserved and experimentally-verified immunogenic influenza A epitopes as putative non-seasonal influenza vaccines; one specifically targets the US population and the other is a universal vaccine. The USA-specific vaccine comprised 6 CD8+ T cell epitopes (GILGFVFTL, FMYSDFHFI, GMDPRMCSL, SVKEKDMTK, FYIQMCTEL, DTVNRTHQY) and 3 CD4+ epitopes (KGILGFVFTLTVPSE, EYIMKGVYINTALLN, ILGFVFTLTVPSERG). The universal vaccine comprised 8 CD8+ epitopes: (FMYSDFHFI, GILGFVFTL, ILRGSVAHK, FYIQMCTEL, ILKGKFQTA, YYLEKANKI, VSDGGPNLY, YSHGTGTGY) and the same 3 CD4+ epitopes. Our USA-specific vaccine has a population protection coverage (portion of the population potentially responsive to one or more component epitopes of the vaccine, PPC) of over 96% and 95% coverage of observed influenza subtypes. The universal vaccine has a PPC value of over 97% and 88% coverage of observed subtypes.
Resumo:
A knowledge management tool developed by the GIS Center for to support project reporting tools, project publications, and a project data portal for materials related to the WAWASH Program.
Resumo:
In this article, we describe the development of an exten- sion to the Simple Knowledge Organization System (SKOS) to accommodate the needs of vocabulary devel- opment applications (VDA) managing metadata schemes and requiring close tracking of change to both those schemes and their member concepts. We take a neo- pragmatic epistemic stance in asserting the need for an entity in SKOS modeling to mediate between the abstract concept and the concrete scheme. While the SKOS model sufficiently describes entities for modeling the current state of a scheme in support of indexing and search on the Semantic Web, it lacks the expressive power to serve the needs of VDA needing to maintain scheme historical continuity. We demonstrate prelimi- narily that conceptualizations drawn from empirical work in modeling entities in the bibliographic universe, such as works, texts, and exemplars, can provide the basis for SKOS extension in ways that support more rig- orous demands of capturing concept evolution in VDA.
Resumo:
Northwestern Adriatic Sea Mediterranean mussels are exposed to fluctuating environmental parameters and to natural and anthropogenic stressors. Today is well known that mussels can be defined as holobiont, even if remains a lot to elucidate about how an organism and its microbial component response to environmental stress. This PhD dissertation aims to investigate microbiome possible adaptive patters exploiting the organism physiology response to stress, using the NGS sequencing method. The experimental approach consisted of two phases to first determine (i) the microbiome at a tissue scale level, (ii) the microbiome and physiological response to natural and anthropogenic stress environment and the chemical assessment of the microecosystem the Northwestern Adriatic Sea Mediterranean Mussel lives in. Results revealed firstly a robust microbiome well differentiated from seawater microecosystem, with compositional variations at the organ level. Thanks to those findings, digestive gland, the organ in which digestive and detoxification processes allow animal to tolerate and accumulate xenobiotics of natural and anthropogenic origin, was the selected tissue for the second phase of the project. The second phase of the project evaluated the putative physiological variations and the compositional changes in microbiome of digestive gland. I then manage to assess microbiome region trends across the north Adriatic, with each sampling site well differentiated from the others. Finally, a chemical method able to a powerful tool for the analytical detection of the major pollutants in mussels were validated. These first results may provide baseline information for future studies approaches of seasonal and region trends of microbiota profiles and physiological responses in terms of metabolism.
Resumo:
The thesis is focused on introducing basic MIMO-based and Massive MIMO-based systems and their possible benefits. Then going through the implementation options that we have, according to 3GPP standards, for 5G systems and how the transition is done from a non-standalone 5G RAN to a completely standalone 5G RAN. Having introduced the above-mentioned subjects and providing some definition of telecommunications principles, we move forward to a more technical analysis of the Capacity, Throughput, Power consumption, and Costs. Comparing all the mentioned parameters between a Massive-MIMO-based system and a MIMO-based system. In the analysis of power consumption and costs, we also introduce the concept of virtualization and its benefits in terms of both power and costs. Finally, we try to justify a trade-off between having a more reliable system with a high capacity and throughput while keeping the costs as low as possible.
Resumo:
This thesis develops AI methods as a contribution to computational musicology, an interdisciplinary field that studies music with computers. In systematic musicology a composition is defined as the combination of harmony, melody and rhythm. According to de La Borde, harmony alone "merits the name of composition". This thesis focuses on analysing the harmony from a computational perspective. We concentrate on symbolic music representation and address the problem of formally representing chord progressions in western music compositions. Informally, chords are sets of pitches played simultaneously, and chord progressions constitute the harmony of a composition. Our approach combines ML techniques with knowledge-based techniques. We design and implement the Modal Harmony ontology (MHO), using OWL. It formalises one of the most important theories in western music: the Modal Harmony Theory. We propose and experiment with different types of embedding methods to encode chords, inspired by NLP and adapted to the music domain, using both statistical (extensional) knowledge by relying on a huge dataset of chord annotations (ChoCo), intensional knowledge by relying on MHO and a combination of the two. The methods are evaluated on two musicologically relevant tasks: chord classification and music structure segmentation. The former is verified by comparing the results of the Odd One Out algorithm to the classification obtained with MHO. Good performances (accuracy: 0.86) are achieved. We feed a RNN for the latter, using our embeddings. Results show that the best performance (F1: 0.6) is achieved with embeddings that combine both approaches. Our method outpeforms the state of the art (F1 = 0.42) for symbolic music structure segmentation. It is worth noticing that embeddings based only on MHO almost equal the best performance (F1 = 0.58). We remark that those embeddings only require the ontology as an input as opposed to other approaches that rely on large datasets.
Resumo:
Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.
Resumo:
Una de las actuaciones posibles para la gestión de los residuos sólidos urbanos es la valorización energética, es decir la incineración con recuperación de energía. Sin embargo es muy importante controlar adecuadamente el proceso de incineración para evitar en lo posible la liberación de sustancias contaminantes a la atmósfera que puedan ocasionar problemas de contaminación industrial.Conseguir que tanto el proceso de incineración como el tratamiento de los gases se realice en condiciones óptimas presupone tener un buen conocimiento de las dependencias entre las variables de proceso. Se precisan métodos adecuados de medida de las variables más importantes y tratar los valores medidos con modelos adecuados para transformarlos en magnitudes de mando. Un modelo clásico para el control parece poco prometedor en este caso debido a la complejidad de los procesos, la falta de descripción cuantitativa y la necesidad de hacer los cálculos en tiempo real. Esto sólo se puede conseguir con la ayuda de las modernas técnicas de proceso de datos y métodos informáticos, tales como el empleo de técnicas de simulación, modelos matemáticos, sistemas basados en el conocimiento e interfases inteligentes. En [Ono, 1989] se describe un sistema de control basado en la lógica difusa aplicado al campo de la incineración de residuos urbanos. En el centro de investigación FZK de Karslruhe se están desarrollando aplicaciones que combinan la lógica difusa con las redes neuronales [Jaeschke, Keller, 1994] para el control de la planta piloto de incineración de residuos TAMARA. En esta tesis se plantea la aplicación de un método de adquisición de conocimiento para el control de sistemas complejos inspirado en el comportamiento humano. Cuando nos encontramos ante una situación desconocida al principio no sabemos como actuar, salvo por la extrapolación de experiencias anteriores que puedan ser útiles. Aplicando procedimientos de prueba y error, refuerzo de hipótesis, etc., vamos adquiriendo y refinando el conocimiento, y elaborando un modelo mental. Podemos diseñar un método análogo, que pueda ser implementado en un sistema informático, mediante el empleo de técnicas de Inteligencia Artificial.Así, en un proceso complejo muchas veces disponemos de un conjunto de datos del proceso que a priori no nos dan información suficientemente estructurada para que nos sea útil. Para la adquisición de conocimiento pasamos por una serie de etapas: - Hacemos una primera selección de cuales son las variables que nos interesa conocer. - Estado del sistema. En primer lugar podemos empezar por aplicar técnicas de clasificación (aprendizaje no supervisado) para agrupar los datos y obtener una representación del estado de la planta. Es posible establecer una clasificación, pero normalmente casi todos los datos están en una sola clase, que corresponde a la operación normal. Hecho esto y para refinar el conocimiento utilizamos métodos estadísticos clásicos para buscar correlaciones entre variables (análisis de componentes principales) y así poder simplificar y reducir la lista de variables. - Análisis de las señales. Para analizar y clasificar las señales (por ejemplo la temperatura del horno) es posible utilizar métodos capaces de describir mejor el comportamiento no lineal del sistema, como las redes neuronales. Otro paso más consiste en establecer relaciones causales entre las variables. Para ello nos sirven de ayuda los modelos analíticos - Como resultado final del proceso se pasa al diseño del sistema basado en el conocimiento. El objetivo principal es aplicar el método al caso concreto del control de una planta de tratamiento de residuos sólidos urbanos por valorización energética. En primer lugar, en el capítulo 2 Los residuos sólidos urbanos, se trata el problema global de la gestión de los residuos, dando una visión general de las diferentes alternativas existentes, y de la situación nacional e internacional en la actualidad. Se analiza con mayor detalle la problemática de la incineración de los residuos, poniendo especial interés en aquellas características de los residuos que tienen mayor importancia de cara al proceso de combustión.En el capítulo 3, Descripción del proceso, se hace una descripción general del proceso de incineración y de los distintos elementos de una planta incineradora: desde la recepción y almacenamiento de los residuos, pasando por los distintos tipos de hornos y las exigencias de los códigos de buena práctica de combustión, el sistema de aire de combustión y el sistema de humos. Se presentan también los distintos sistemas de depuración de los gases de combustión, y finalmente el sistema de evacuación de cenizas y escorias.El capítulo 4, La planta de tratamiento de residuos sólidos urbanos de Girona, describe los principales sistemas de la planta incineradora de Girona: la alimentación de residuos, el tipo de horno, el sistema de recuperación de energía, y el sistema de depuración de los gases de combustión Se describe también el sistema de control, la operación, los datos de funcionamiento de la planta, la instrumentación y las variables que son de interés para el control del proceso de combustión.En el capítulo 5, Técnicas utilizadas, se proporciona una visión global de los sistemas basados en el conocimiento y de los sistemas expertos. Se explican las diferentes técnicas utilizadas: redes neuronales, sistemas de clasificación, modelos cualitativos, y sistemas expertos, ilustradas con algunos ejemplos de aplicación.Con respecto a los sistemas basados en el conocimiento se analizan en primer lugar las condiciones para su aplicabilidad, y las formas de representación del conocimiento. A continuación se describen las distintas formas de razonamiento: redes neuronales, sistemas expertos y lógica difusa, y se realiza una comparación entre ellas. Se presenta una aplicación de las redes neuronales al análisis de series temporales de temperatura.Se trata también la problemática del análisis de los datos de operación mediante técnicas estadísticas y el empleo de técnicas de clasificación. Otro apartado está dedicado a los distintos tipos de modelos, incluyendo una discusión de los modelos cualitativos.Se describe el sistema de diseño asistido por ordenador para el diseño de sistemas de supervisión CASSD que se utiliza en esta tesis, y las herramientas de análisis para obtener información cualitativa del comportamiento del proceso: Abstractores y ALCMEN. Se incluye un ejemplo de aplicación de estas técnicas para hallar las relaciones entre la temperatura y las acciones del operador. Finalmente se analizan las principales características de los sistemas expertos en general, y del sistema experto CEES 2.0 que también forma parte del sistema CASSD que se ha utilizado.El capítulo 6, Resultados, muestra los resultados obtenidos mediante la aplicación de las diferentes técnicas, redes neuronales, clasificación, el desarrollo de la modelización del proceso de combustión, y la generación de reglas. Dentro del apartado de análisis de datos se emplea una red neuronal para la clasificación de una señal de temperatura. También se describe la utilización del método LINNEO+ para la clasificación de los estados de operación de la planta.En el apartado dedicado a la modelización se desarrolla un modelo de combustión que sirve de base para analizar el comportamiento del horno en régimen estacionario y dinámico. Se define un parámetro, la superficie de llama, relacionado con la extensión del fuego en la parrilla. Mediante un modelo linealizado se analiza la respuesta dinámica del proceso de incineración. Luego se pasa a la definición de relaciones cualitativas entre las variables que se utilizan en la elaboración de un modelo cualitativo. A continuación se desarrolla un nuevo modelo cualitativo, tomando como base el modelo dinámico analítico.Finalmente se aborda el desarrollo de la base de conocimiento del sistema experto, mediante la generación de reglas En el capítulo 7, Sistema de control de una planta incineradora, se analizan los objetivos de un sistema de control de una planta incineradora, su diseño e implementación. Se describen los objetivos básicos del sistema de control de la combustión, su configuración y la implementación en Matlab/Simulink utilizando las distintas herramientas que se han desarrollado en el capítulo anterior.Por último para mostrar como pueden aplicarse los distintos métodos desarrollados en esta tesis se construye un sistema experto para mantener constante la temperatura del horno actuando sobre la alimentación de residuos.Finalmente en el capítulo Conclusiones, se presentan las conclusiones y resultados de esta tesis.
Resumo:
La implantació de Sistemes de Suport a la presa de Decisions (SSD) en Estacions Depuradores d'Aigües Residuals Urbanes (EDAR) facilita l'aplicació de tècniques més eficients basades en el coneixement per a la gestió del procés, assegurant la qualitat de l'aigua de sortida tot minimitzant el cost ambiental de la seva explotació. Els sistemes basats en el coneixement es caracteritzen per la seva capacitat de treballar amb dominis molt poc estructurats, i gran part de la informació rellevant de tipus qualitatiu i/o incerta. Precisament aquests són els trets característics que es poden trobar en els sistemes biològics de depuració, i en conseqüència en una EDAR. No obstant, l'elevada complexitat dels SSD fa molt costós el seu disseny, desenvolupament i aplicació en planta real, pel que resulta determinant la generació d'un protocol que faciliti la seva exportació a EDARs de tecnologia similar. L'objectiu del present treball de Tesi és precisament el desenvolupament d'un protocol que faciliti l'exportació sistemàtica de SSD i l'aprofitament del coneixement del procés prèviament adquirit. El treball es desenvolupa en base al cas d'estudi resultant de l'exportació a l'EDAR Montornès del prototipus original de SSD implementat a l'EDAR Granollers. Aquest SSD integra dos tipus de sistemes basats en el coneixement, concretament els sistemes basats en regles (els quals són programes informàtics que emulen el raonament humà i la seva capacitat de solucionar problemes utilitzant les mateixes fonts d'informació) i els sistemes de raonament basats en casos (els quals són programes informàtics basats en el coneixement que volen solucionar les situacions anormals que pateix la planta en el moment actual mitjançant el record de l'acció efectuada en una situació passada similar). El treball està estructurat en diferents capítols, en el primer dels quals, el lector s'introdueix en el món dels sistemes de suport a la decisió i en el domini de la depuració d'aigües. Seguidament es fixen els objectius i es descriuen els materials i mètodes utilitzats. A continuació es presenta el prototipus de SSD desenvolupat per la EDAR Granollers. Una vegada el prototipus ha estat presentat es descriu el primer protocol plantejat pel mateix autor de la Tesi en el seu Treball de Recerca. A continuació es presenten els resultats obtinguts en l'aplicació pràctica del protocol per generar un nou SSD, per una planta depuradora diferent, partint del prototipus. L'aplicació pràctica del protocol permet l'evolució del mateix cap a un millor pla d'exportació. Finalment, es pot concloure que el nou protocol redueix el temps necessari per realitzar el procés d'exportació, tot i que el nombre de passos necessaris ha augmentat, la qual cosa significa que el nou protocol és més sistemàtic.
Resumo:
La gestió de l'aigua residual és una tasca complexa. Hi ha moltes substàncies contaminants conegudes però encara moltes per conèixer, i el seu efecte individual o col·lgectiu és difícil de predir. La identificació i avaluació dels impactes ambientals resultants de la interacció entre els sistemes naturals i socials és un assumpte multicriteri. Els gestors ambientals necessiten eines de suport pels seus diagnòstics per tal de solucionar problemes ambientals. Les contribucions d'aquest treball de recerca són dobles: primer, proposar l'ús d'un enfoc basat en la modelització amb agents per tal de conceptualitzar i integrar tots els elements que estan directament o indirectament involucrats en la gestió de l'aigua residual. Segon, proposar un marc basat en l'argumentació amb l'objectiu de permetre als agents raonar efectivament. La tesi conté alguns exemples reals per tal de mostrar com un marc basat amb agents que argumenten pot suportar diferents interessos i diferents perspectives. Conseqüentment, pot ajudar a construir un diàleg més informat i efectiu i per tant descriure millor les interaccions entre els agents. En aquest document es descriu primer el context estudiat, escalant el problema global de la gestió de la conca fluvial a la gestiódel sistema urbà d'aigües residuals, concretament l'escenari dels abocaments industrials. A continuació, s'analitza el sistema mitjançant la descripció d'agents que interaccionen. Finalment, es descriuen alguns prototips capaços de raonar i deliberar, basats en la lògica no monòtona i en un llenguatge declaratiu (answer set programming). És important remarcar que aquesta tesi enllaça dues disciplines: l'enginyeria ambiental (concretament l'àrea de la gestió de les aigües residuals) i les ciències de la computació (concretament l'àrea de la intel·ligència artificial), contribuint així a la multidisciplinarietat requerida per fer front al problema estudiat. L'enginyeria ambiental ens proporciona el coneixement del domini mentre que les ciències de la computació ens permeten estructurar i especificar aquest coneixement.
Resumo:
In this paper we describe how we generated written explanations to ‘indirect users’ of a knowledge-based system in the domain of drug prescription. We call ‘indirect users’ the intended recipients of explanations, to distinguish them from the prescriber (the ‘direct’ user) who interacts with the system. The Explanation Generator was designed after several studies about indirect users' information needs and physicians' explanatory attitudes in this domain. It integrates text planning techniques with ATN-based surface generation. A double modeling component enables adapting the information content, order and style to the indirect user to whom explanation is addressed. Several examples of computer-generated texts are provided, and they are contrasted with the physicians' explanations to discuss advantages and limits of the approach adopted.
Resumo:
It is indisputable that climate is an important factor in many livestock diseases. Nevertheless, our knowledge of the impact of climate change on livestock infectious diseases is much less certain.Therefore, the aim of the article is to conduct a systematic review of the literature on the topic utilizing available retrospective data and information. Across a corpus of 175 formal publications,limited empirical evidence was offered to underpin many of the main arguments. The literature reviewed was highly polarized and often inconsistent regarding what the future may hold. Historical explorations were rare. However, identifying past drivers to livestock disease may not fully capture the extent that new and unknown drivers will influence future change. As such, our current predictive capacity is low. We offer a number of recommendations to strengthen this capacity in the coming years. We conclude that our current approach to research on the topic is limiting and unlikely to yield sufficient, actionable evidence to inform future praxis. Therefore, we argue for the creation of a reflexive, knowledge-based system, underpinned by a collective intelligence framework to support the drawing of inferences across the literature.
Resumo:
It is indisputable that climate is an important factor in many livestock diseases. Nevertheless, our knowledge of the impact of climate change on livestock infectious diseases is much less certain. Therefore, the aim of the article is to conduct a systematic review of the literature on the topic utilizing available retrospective data and information. Across a corpus of 175 formal publications, limited empirical evidence was offered to underpin many of the main arguments. The literature reviewed was highly polarized and often inconsistent regarding what the future may hold. Historical explorations were rare. However, identifying past drivers to livestock disease may not fully capture the extent that new and unknown drivers will influence future change. As such, our current predictive capacity is low. We offer a number of recommendations to strengthen this capacity in the coming years. We conclude that our current approach to research on the topic is limiting and unlikely to yield sufficient, actionable evidence to inform future praxis. Therefore, we argue for the creation of a reflexive, knowledge-based system, underpinned by a collective intelligence framework to support the drawing of inferences across the literature.
Resumo:
Presenting relevant information via web-based user friendly interfac- es makes the information more accessible to the general public. This is especial- ly useful for sensor networks that monitor natural environments. Adequately communicating this type of information helps increase awareness about the limited availability of natural resources and promotes their better use with sus- tainable practices. In this paper, I suggest an approach to communicating this information to wide audiences based on simulating data journalism using artifi- cial intelligence techniques. I analyze this approach by describing a pioneer knowledge-based system called VSAIH, which looks for news in hydrological data from a national sensor network in Spain and creates news stories that gen- eral users can understand. VSAIH integrates artificial intelligence techniques, including a model-based data analyzer and a presentation planner. In the paper, I also describe characteristics of the hydrological national sensor network and the technical solutions applied by VSAIH to simulate data journalism.