253 resultados para Kingsbury


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is in two parts and addresses two of getting more information out of the RF signal from three-dimensional (3D) mechanically-swept medical ultrasound . The first topic is the use of non-blind deconvolution improve the clarity of the data, particularly in the direction to the individual B-scans. The second topic is imaging. We present a robust and efficient approach to estimation and display of axial strain information. deconvolution, we calculate an estimate of the point-spread at each depth in the image using Field II. This is used as of an Expectation Maximisation (EM) framework in which ultrasound scatterer field is modelled as the product of (a) a smooth function and (b) a fine-grain varying function. the E step, a Wiener filter is used to estimate the scatterer based on an assumed piecewise smooth component. In the M , wavelet de-noising is used to estimate the piecewise smooth from the scatterer field. strain imaging, we use a quasi-static approach with efficient based algorithms. Our contributions lie in robust and 3D displacement tracking, point-wise quality-weighted , and a stable display that shows not only strain but an indication of the quality of the data at each point in the . This enables clinicians to see where the strain estimate is and where it is mostly noise. deconvolution, we present in-vivo images and simulations quantitative performance measures. With the blurred 3D taken as OdB, we get an improvement in signal to noise ratio 4.6dB with a Wiener filter alone, 4.36dB with the ForWaRD and S.18dB with our EM algorithm. For strain imaging show images based on 2D and 3D data and describe how full D analysis can be performed in about 20 seconds on a typical . We will also present initial results of our clinical study to explore the applications of our system in our local hospital. © 2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method for modelling the statistics of 2D photographic images useful in image restoration is defined. The new method is based on the Dual Tree Complex Wavelet Transform (DT-CWT) but a phase rotation is applied to the coefficients to create complex coefficients whose phase is shift-invariant at multiscale edge and ridge features. This is in addition to the magnitude shift invariance achieved by the DT-CWT. The increased correlation between coefficients adjacent in space and scale provides an improved mechanism for signal estimation. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a method for verifying seismic modelling parameters. It is equivalent to performing several iterations of unconstrained least-squares migration (LSM). The approach allows the comparison of modelling/imaging parameter configurations with greater confidence than simply viewing the migrated images. The method is best suited to determining discrete parameters but can be used for continuous parameters albeit with greater computational expense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a novel visualisation method for diffusion tensor MRI datasets is introduced. This is based on the use of Complex Wavelets in order to produce "stripy" textures which depict the anisotropic component of the diffusion tensors. Grey-scale pixel intensity is used to show the isotropic component. This paper also discusses enhancements of the technique for 3D visualisation. © 2004 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spread Transform (ST) is a quantization watermarking algorithm in which vectors of the wavelet coefficients of a host work are quantized, using one of two dithered quantizers, to embed hidden information bits; Loo had some success in applying such a scheme to still images. We extend ST to the video watermarking problem. Visibility considerations require that each spreading vector refer to corresponding pixels in each of several frames, that is, a multi-frame embedding approach. Use of the hierarchical complex wavelet transform (CWT) for a visual mask reduces computation and improves robustness to jitter and valumetric scaling. We present a method of recovering temporal synchronization at the detector, and give initial results demonstrating the robustness and capacity of the scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a watermarking algorithm in the complex wavelet domain. We then model watermarking as a communication process and show that the complex wavelet domain has relatively high capacity and is a potentially good domain for watermarking. Finally, a technique for registering geometrically distorted images, which is based on motion estimation in the wavelet domain, is described. The registration process can assist watermark detection in a watermarked image attacked by Stirmark, for example.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently we have developed a new form of discrete wavelet transform, which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. This introduces limited redundancy (2 m:1 for m-dimensional signals) and allows the transform to provide approximate shift invariance and directionally selective filters (properties lacking in the traditional wavelet transform) while preserving the usual properties of perfect reconstruction and computational efficiency with good well-balanced frequency responses. In this paper we analyse why the new transform can be designed to be shift invariant, and describe how to estimate the accuracy of this approximation and design suitable filters to achieve this.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of mixture-model techniques for motion estimation and image sequence segmentation was discussed. The issues such as modeling of occlusion and uncovering, determining the relative depth of the objects in a scene, and estimating the number of objects in a scene were also investigated. The segmentation algorithm was found to be computationally demanding, but the computational requirements were reduced as the motion parameters and segmentation of the frame were initialized. The method provided a stable description, in whichthe addition and removal of objects from the description corresponded to the entry and exit of objects from the scene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical dependencies among wavelet coefficients are commonly represented by graphical models such as hidden Markov trees (HMTs). However, in linear inverse problems such as deconvolution, tomography, and compressed sensing, the presence of a sensing or observation matrix produces a linear mixing of the simple Markovian dependency structure. This leads to reconstruction problems that are non-convex optimizations. Past work has dealt with this issue by resorting to greedy or suboptimal iterative reconstruction methods. In this paper, we propose new modeling approaches based on group-sparsity penalties that leads to convex optimizations that can be solved exactly and efficiently. We show that the methods we develop perform significantly better in de-convolution and compressed sensing applications, while being as computationally efficient as standard coefficient-wise approaches such as lasso. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a novel cortex-inspired feed-forward hierarchical object recognition system based on complex wavelets is proposed and tested. Complex wavelets contain three key properties for object representation: shift invariance, which enables the extraction of stable local features; good directional selectivity, which simplifies the determination of image orientations; and limited redundancy, which allows for efficient signal analysis using the multi-resolution decomposition offered by complex wavelets. In this paper, we propose a complete cortex-inspired object recognition system based on complex wavelets. We find that the implementation of the HMAX model for object recognition in [1, 2] is rather over-complete and includes too much redundant information and processing. We have optimized the structure of the model to make it more efficient. Specifically, we have used the Caltech 5 standard dataset to compare with Serre's model in [2] (which employs Gabor filter bands). Results demonstrate that the complex wavelet model achieves a speed improvement of about 4 times over the Serre model and gives comparable recognition performance. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a matching framework to find robust correspondences between image features by considering the spatial information between them. To achieve this, we define spatial constraints on the relative orientation and change in scale between pairs of features. A pairwise similarity score, which measures the similarity of features based on these spatial constraints, is considered. The pairwise similarity scores for all pairs of candidate correspondences are then accumulated in a 2-D similarity space. Robust correspondences can be found by searching for clusters in the similarity space, since actual correspondences are expected to form clusters that satisfy similar spatial constraints in this space. As it is difficult to achieve reliable and consistent estimates of scale and orientation, an additional contribution is that these parameters do not need to be determined at the interest point detection stage, which differs from conventional methods. Polar matching of dual-tree complex wavelet transform features is used, since it fits naturally into the framework with the defined spatial constraints. Our tests show that the proposed framework is capable of producing robust correspondences with higher correspondence ratios and reasonable computational efficiency, compared to other well-known algorithms. © 1992-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An anomaly detection approach is considered for the mine hunting in sonar imagery problem. The authors exploit previous work that used dual-tree wavelets and fractal dimension to adaptively suppress sand ripples and a matched filter as an initial detector. Here, lacunarity inspired features are extracted from the remaining false positives, again using dual-tree wavelets. A one-class support vector machine is then used to learn a decision boundary, based only on these false positives. The approach exploits the large quantities of 'normal' natural background data available but avoids the difficult requirement of collecting examples of targets in order to train a classifier. © 2012 The Institution of Engineering and Technology.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple flame-flame interactions in premixed combustion are investigated using direct numerical simulations of twin turbulent V-flames for a range of turbulence intensities and length scales. Interactions are identified using a novel automatic feature extraction (AFE) technique, based on data registration using the dual-tree complex wavelet transform. Information on the time, position, and type of interactions, and their influence on the flame area is extracted using AFE. Characteristic length and time scales for the interactions are identified. The effect of interactions on the flame brush is quantified through a global stretch rate, defined as the sum of flamelet stretch and interaction stretch contributions. The effects of each interaction type are discussed. It is found that the magnitude of the fluctuations in flamelet and interaction stretch are comparable, and a qualitative sensitivity to turbulence length scale is found for one interaction type. Implications for modeling are discussed. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents new methods for computing the step sizes of the subband-adaptive iterative shrinkage-thresholding algorithms proposed by Bayram & Selesnick and Vonesch & Unser. The method yields tighter wavelet-domain bounds of the system matrix, thus leading to improved convergence speeds. It is directly applicable to non-redundant wavelet bases, and we also adapt it for cases of redundant frames. It turns out that the simplest and most intuitive setting for the step sizes that ignores subband aliasing is often satisfactory in practice. We show that our methods can be used to advantage with reweighted least squares penalty functions as well as L1 penalties. We emphasize that the algorithms presented here are suitable for performing inverse filtering on very large datasets, including 3D data, since inversions are applied only to diagonal matrices and fast transforms are used to achieve all matrix-vector products.