958 resultados para K-uniformly Convex Functions
Resumo:
A total of 20,065 weights recorded on 3016 Nelore animals were used to estimate covariance functions for growth from birth to 630 days of age, assuming a parametric correlation structure to model within-animal correlations. The model of analysis included fixed effects of contemporary groups and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Genetic effects of the animal and its dam and maternal permanent environmental effects were modelled by random regressions on Legendre polynomials of age at recording. Changes in direct permanent environmental effect variances were modelled by a polynomial variance function, together with a parametric correlation function to account for correlations between ages. Stationary and nonstationary models were used to model within-animal correlations between different ages. Residual variances were considered homogeneous or heterogeneous, with changes modelled by a step or polynomial function of age at recording. Based on Bayesian information criterion, a model with a cubic variance function combined with a nonstationary correlation function for permanent environmental effects, with 49 parameters to be estimated, fitted best. Modelling within-animal correlations through a parametric correlation structure can describe the variation pattern adequately. Moreover, the number of parameters to be estimated can be decreased substantially compared to a model fitting random regression on Legendre polynomial of age. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Let (X, d) be a compact metric space and f: X → X a continuous function and consider the hyperspace (K(X), H) of all nonempty compact subsets of X endowed with the Hausdorff metric induced by d. Let f̄: K(X) → K (X) be defined by f̄(A) = {f(a)/a ∈ A} the natural extension of f to K(X), then the aim of this work is to study the dynamics of f when f is turbulent (erratic, respectively) and its relationships.
Resumo:
The result that we treat in this article allows to the utilization of classic tools of convex analysis in the study of optimality conditions in the optimal control convex process for a Volterra-Stietjes linear integral equation in the Banach space G([a, b],X) of the regulated functions in [a, b], that is, the functions f : [a, 6] → X that have only descontinuity of first kind, in Dushnik (or interior) sense, and with an equality linear restriction. In this work we introduce a convex functional Lβf(x) of Nemytskii type, and we present conditions for its lower-semicontinuity. As consequence, Weierstrass Theorem garantees (under compacity conditions) the existence of solution to the problem min{Lβf(x)}. © 2009 Academic Publications.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Let M2n+1 be a C(CPn) -singular manifold. We study functions and vector fields with isolated singularities on M2n+1. A C(CPn) -singular manifold is obtained from a smooth manifold M2n+1 with boundary in the form of a disjoint union of complex projective spaces CPn boolean OR CPn boolean OR ... boolean OR CPn with subsequent capture of a cone over each component of the boundary. Let M2n+1 be a compact C(CPn) -singular manifold with k singular points. The Euler characteristic of M2n+1 is equal to chi(M2n+1) = k(1 - n)/2. Let M2n+1 be a C(CPn)-singular manifold with singular points m(1), ..., m(k). Suppose that, on M2n+1, there exists an almost smooth vector field V (x) with finite number of zeros m(1), ..., m(k), x(1), ..., x(1). Then chi(M2n+1) = Sigma(l)(i=1) ind(x(i)) + Sigma(k)(i=1) ind(m(i)).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Weight records of Brazilian Nelore cattle, from birth to 630 d of age, recorded every 3 mo, were analyzed using random regression models. Independent variables were Legendre polynomials of age at recording. The model of analysis included contemporary groups as fixed effects and age of dam as a linear and quadratic covariable. Mean trends were modeled through a cubic regression on orthogonal polynomials of age. Up to four sets of random regression coefficients were fitted for animals' direct and maternal, additive genetic, and permanent environmental effects. Changes in measurement error variances with age were modeled through a variance function. Orders of polynomial fit from three to six were considered, resulting in up to 77 parameters to be estimated. Models fitting random regressions modeled the pattern of variances in the data adequately, with estimates similar to those from corresponding univariate analysis. Direct heritability estimates decreased after birth and tended to be lowest at ages at which maternal effect estimates tended to be highest. Maternal heritability estimates increased after birth to a peak around 110 to 120 d of age and decreased thereafter. Additive genetic direct correlation estimates between weights at standard ages (birth, weaning, yearling, and final weight) were moderate to high and maternal genetic and environmental correlations were consistently high.
Resumo:
The Numerical Cognition is infl uenced by biological, cognitive, educational and cultural factors. It consists of a primary system, called Number Sense that would be innate and universal, also of secondary systems: the Calculation, implied to perform mathematical operations by means of symbols or words and Number Processing, which is divided into two components, Number Comprehension, related with the understanding of numerical symbols and Number Production, which includes reading, writing and coun-ting numbers. However, studies that show the development of these functions in children of preschool age are scarce. Therefore, aims of this study were to investigate numerical cognition in preschool Brazilian children to demonstrate the construct validity of the ZAREKI-K (A Neuropsychological Battery for the Assessment of Treatment of Numbers and Calculation for preschool children). The participants were 42 children of both genders, who attended public elementary schools; the children were evaluated by this battery and WISC-III. The results indicated signifi cant differences associated with age which children of 6 years had better scores on subtests related to Number Production, Calculation and Number Comprehension, as well moderate and high correlations between some subtests of both instruments, demonstrating the construct validity of the battery. In conclusion, preliminary normative data were obtained for ZAREKI-K. The analyses suggested that it is a promising tool for the assessment of numerical cognition in preschool children.Keywords: Mathematics, number, preschoolers, working memory, Developmental Dyscalculia.
Resumo:
For a locally compact Hausdorff space K and a Banach space X we denote by C-0(K, X) the space of X-valued continuous functions on K which vanish at infinity, provided with the supremum norm. Let n be a positive integer, Gamma an infinite set with the discrete topology, and X a Banach space having non-trivial cotype. We first prove that if the nth derived set of K is not empty, then the Banach-Mazur distance between C-0(Gamma, X) and C-0(K, X) is greater than or equal to 2n + 1. We also show that the Banach-Mazur distance between C-0(N, X) and C([1, omega(n)k], X) is exactly 2n + 1, for any positive integers n and k. These results extend and provide a vector-valued version of some 1970 Cambern theorems, concerning the cases where n = 1 and X is the scalar field.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
Invariant natural killer T (iNKT) cells undergo canonical, Vα14-Jα18 rearrangement of the T-cell receptor (TCR) in mice; this form of the TCR recognizes glycolipids presented by CD1d. iNKT cells mediate many different immune reactions. Their constitutive activated and memory phenotype and rapid initiation of effector functions after stimulation indicate previous antigen-specific stimulation. However, little is known about this process. We investigated whether symbiotic microbes can determine the activated phenotype and function of iNKT cells.
Resumo:
Open web steel joists are designed in the United States following the governing specification published by the Steel Joist Institute. For compression members in joists, this specification employs an effective length factor, or K-factor, in confirming their adequacy. In most cases, these K-factors have been conservatively assumed equal to 1.0 for compression web members, regardless of the fact that intuition and limited experimental work indicate that smaller values could be justified. Given that smaller K-factors could result in more economical designs without a loss in safety, the research presented in this thesis aims to suggest procedures for obtaining more rational values. Three different methods for computing in-plane and out-of-plane K-factors are investigated, including (1) a hand calculation method based on the use of alignment charts, (2) computational critical load (eigenvalue) analyses using uniformly distributed loads, and (3) computational analyses using a compressive strain approach. The latter method is novel and allows for computing the individual buckling load of a specific member within a system, such as a joist. Four different joist configurations are investigated, including an 18K3, 28K10, and two variations of a 32LH06. Based on these methods and the very limited number of joists studied, it appears promising that in-plane and out-of-plane K-factors of 0.75 and 0.85, respectively, could be used in computing the flexural buckling strength of web members in routine steel joist design. Recommendations for future work, which include systematically investigating a wider range of joist configurations and connection restraint, are provided.