930 resultados para K -induced contraction
Resumo:
Recent advances have stimulated new interest in the area of crystal arthritis, as microcrystals can be considered to be endogenous "danger signals" and are potent stimulators of immune as well as non-immune cells. The best known microcrystals include urate (MSU), and calcium pyrophosphate (CPP) crystals, associated with gout and pseudogout, respectively. Acute inflammation is the hallmark of the acute tissue reaction to crystals in both gout and pseudogout. The mechanisms leading to joint inflammation in these diseases involve first crystal formation and subsequent coating with serum proteins. Crystals can then interact with plasma cell membrane, either directly or via membrane receptors, leading to NLRP3 activation, proteolytic cleavage and maturation of pro-interleukin-1β (pro-IL1β) and secretion of mature IL1β. Once released, this cytokine orchestrates a series of events leading to endothelial cell activation and neutrophil recruitment. Ultimately, gout resolution involves several mechanisms including monocyte differentiation into macrophage, clearance of apoptotic neutrophils by macrophages, production of Transforming Growth Factor (TGF-β) and modification of protein coating on the crystal surface. This review will examine these different steps.
Resumo:
The purpose of this study was to investigate astrocytic oxidative metabolism using 1-(11)C-acetate. 1-(11)C-acetate kinetics were evaluated in the rat somatosensory cortex using a beta-scintillator during different manipulations (test-retest, infraorbital nerve stimulation, and administration of acetazolamide or dichloroacetate). In humans a visual activation paradigm was used and kinetics were measured with positron emission tomography. Data were analyzed using a one-tissue compartment model. The following features supported the hypothesis that washout of radiolabel (k(2)) is because of (11)C-CO(2) and therefore related to oxygen consumption (CMRO(2)): (1) the onset of (11)C washout was delayed; (2)k(2) was not affected by acetazolamide-induced blood flow increase; (3)k(2) demonstrated a significant increase during stimulation in rats (from 0.014+/-0.007 to 0.027+/-0.006 per minute) and humans (from 0.016+/-0.010 to 0.026+/-0.006 per minute); and (4) dichloroacetate led to a substantial decrease of k(2). In the test-retest experiments K(1) and k(2) were very stable. In summary, 1-(11)C-acetate seems a promising tracer to investigate astrocytic oxidative metabolism in vivo. If the washout rate indeed represents the production of (11)C-CO(2), then its increase during stimulation would point to a substantially higher astrocytic oxidative metabolism during brain activation. However, the quantitative relationship between k(2) and CMRO(2) needs to be determined in future experiments.
Resumo:
Genetic defects in autosomal-dominant polycystic kidney disease (ADPKD) promote cystic growth of renal tubules, at least in part by stimulating the accumulation of cAMP. How renal cAMP levels are regulated is incompletely understood. We show that cAMP and the expression of its synthetic enzyme adenylate cyclase-6 (AC6) are up-regulated in cystic kidneys of Bicc1(-)(/-) knockout mice. Bicc1, a protein comprising three K homology (KH) domains and a sterile alpha motif (SAM), is expressed in proximal tubules. The KH domains independently bind AC6 mRNA and recruit the miR-125a from Dicer, whereas the SAM domain enables silencing by Argonaute and TNRC6A/GW182. Bicc1 similarly induces silencing of the protein kinase inhibitor PKIα by miR-27a. Thus, Bicc1 is needed on these target mRNAs for silencing by specific miRNAs. The repression of AC6 by Bicc1 might explain why cysts in ADPKD patients preferentially arise from distal tubules.
Resumo:
The Atripump is a motorless, volume displacement pump based on artificial muscle technology that could reproduce the pump function of normal atrium. It could help prevent blood clots due to blood stagnation and eventually avoid anticoagulation therapy in atrial fibrillation (AF). An animal study has been designed to assess mechanical effects of this pump on fibrillating atrium. The Atripump is a dome shaped silicone coated nitinol actuator. A pacemaker like control unit drives the actuator. In five adult sheep, the right atrium (RA) was exposed and dome sutured onto the epicardium. Atrial fibrillation was induced using rapid epicardial pacing (600 beats/min). Ejection fraction of the RA was obtained with intracardiac ultrasound in baseline, AF and Atripump assisted AF conditions. The dome's contraction rate was 60/min with power supply of 12V, 400 mA for 200 ms and ran for 2 hours in total. Mean temperature on the RA was 39+/-1.5 degrees C. Right atrium ejection fraction was 31% in baseline conditions, 5% and 20% in AF and assisted AF, respectively. In two animals a thrombus appeared in the right appendix and washed out once the pump was turned on. The Atripump washes blood out the RA acting as an anticoagulant device. Possible clinical implications in patients with chronic AF are prevention of embolism of cardiac origin and avoidance of hemorrhagic complication due to chronic anticoagulation.
Resumo:
Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH). Effects of the specific mitoK(ATP) channel opener diazoxide (Diazo, 50 microM) or the blocker 5-hydroxydecanoate (5-HD, 500 microM), the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 microM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 microM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or L-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, L-NAME, or Chel, whereas protection of the PR interval was abolished by L-NAME exclusively. Thus pharmacological opening of the mitoK(ATP) channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.
Resumo:
Exogenous oxidized cholesterol disturbs both lipid metabolism and immune functions. Therefore, it may perturb these modulations with ageing. Effects of the dietary protein type on oxidized cholesterol-induced modulations of age-related changes in lipid metabolism and immune function was examined using differently aged (4 weeks versus 8 months) male Sprague-Dawley rats when casein, soybean protein or milk whey protein isolate (WPI) was the dietary protein source, respectively. The rats were given one of the three proteins in diet containing 0.2% oxidized cholesterols mixture. Soybean protein, as compared with the other two proteins, significantly lowered both the serum thiobarbituric acid reactive substances value and cholesterol, whereas it elevated the ratio of high density lipoprotein-cholesterol/cholesterol in young rats, but not in adult. Moreover, soybean protein, but not casein and WPI, suppressed the elevation of Delta6 desaturation indices of phospholipids in both liver and spleen, particularly in young. On the other hand, WPI, compared to the other two proteins, inhibited the leukotriene B4 production of spleen, irrespective of age. Soybean protein reduced the ratio of CD4(+)/CD8(+) T-cells in splenic lymphocytes. Therefore, the levels of immunoglobulin (Ig)A, IgE and IgG in serum were lowered in rats given soybean protein in both age groups except for IgA in adult, although these observations were not shown in rats given other proteins. Thus, various perturbations of lipid metabolism and immune function caused by oxidized cholesterol were modified depending on the type of dietary protein. The moderation by soybean protein on the change of lipid metabolism seems to be susceptible in young rats whose homeostatic ability is immature. These observations may be exerted through both the promotion of oxidized cholesterol excretion to feces and the change of hormonal release, while WPI may suppress the disturbance of immune function by oxidized cholesterol in both ages. This alleviation may be associated with a large amount of lactoglobulin in WPI. These results thus showed a possibility that oxidized cholesterol-induced perturbations of age-related changes of lipid metabolism and immune function can be moderated by both the selection and combination of dietary protein.
Resumo:
Na,K-ATPase, the main active transport system for monovalent cations in animal cells, is responsible for maintaining Na(+) and K(+) gradients across the plasma membrane. During its transport cycle it binds three cytoplasmic Na(+) ions and releases them on the extracellular side of the membrane, and then binds two extracellular K(+) ions and releases them into the cytoplasm. The fourth, fifth, and sixth transmembrane helices of the alpha subunit of Na,K-ATPase are known to be involved in Na(+) and K(+) binding sites, but the gating mechanisms that control the access of these ions to their binding sites are not yet fully understood. We have focused on the second extracellular loop linking transmembrane segments 3 and 4 and attempted to determine its role in gating. We replaced 13 residues of this loop in the rat alpha1 subunit, from E314 to G326, by cysteine, and then studied the function of these mutants using electrophysiological techniques. We analyzed the results using a structural model obtained by homology with SERCA, and ab initio calculations for the second extracellular loop. Four mutants were markedly modified by the sulfhydryl reagent MTSET, and we investigated them in detail. The substituted cysteines were more readily accessible to MTSET in the E1 conformation for the Y315C, W317C, and I322C mutants. Mutations or derivatization of the substituted cysteines in the second extracellular loop resulted in major increases in the apparent affinity for extracellular K(+), and this was associated with a reduction in the maximum activity. The changes produced by the E314C mutation were reversed by MTSET treatment. In the W317C and I322C mutants, MTSET also induced a moderate shift of the E1/E2 equilibrium towards the E1(Na) conformation under Na/Na exchange conditions. These findings indicate that the second extracellular loop must be functionally linked to the gating mechanism that controls the access of K(+) to its binding site.
Resumo:
Letrozole, an aromatase inhibitor, is ineffective in the presence of ovarian estrogen production. Two subpopulations of apparently postmenopausal women might derive reduced benefit from letrozole due to residual or returning ovarian activity: younger women (who have the potential for residual subclinical ovarian estrogen production), and those with chemotherapy-induced menopause who may experience return of ovarian function. In these situations tamoxifen may be preferable to an aromatase inhibitor. Among 4,922 patients allocated to the monotherapy arms (5 years of letrozole or tamoxifen) in the BIG 1-98 trial we identified two relevant subpopulations: patients with potential residual ovarian function, defined as having natural menopause, treated without adjuvant or neoadjuvant chemotherapy and age ≤ 55 years (n = 641); and those with chemotherapy-induced menopause (n = 105). Neither of the subpopulations examined showed treatment effects differing from the trial population as a whole (interaction P values are 0.23 and 0.62, respectively). Indeed, both among the 641 patients aged ≤ 55 years with natural menopause and no chemotherapy (HR 0.77 [0.51, 1.16]) and among the 105 patients with chemotherapy-induced menopause (HR 0.51 [0.19, 1.39]), the disease-free survival (DFS) point estimate favoring letrozole was marginally more beneficial than in the trial as a whole (HR 0.84 [0.74, 0.95]). Contrary to our initial concern, DFS results for young postmenopausal patients who did not receive chemotherapy and patients with chemotherapy-induced menopause parallel the letrozole benefit seen in the BIG 1-98 population as a whole. These data support the use of letrozole even in such patients.
Resumo:
The expression of the Bacillus subtilis W23 tar genes specifying the biosynthesis of the major wall teichoic acid, the poly(ribitol phosphate), was studied under phosphate limitation using lacZ reporter fusions. Three different regulation patterns can be deduced from these beta-galactosidase activity data: (i) tarD and tarL gene expression is downregulated under phosphate starvation; (ii) tarA and, to a minor extent, tarB expression after an initial decrease unexpectedly increases; and (iii) tarO is not influenced by phosphate concentration. To dissect the tarA regulatory pattern, its two promoters were analysed under phosphate limitation: The P(tarA)-ext promoter is repressed under phosphate starvation by the PhoPR two-component system, whereas, under the same conditions, the P(tarA)-int promoter is upregulated by the action of an extracytoplasmic function (ECF) sigma factor, sigma(M). In contrast to strain 168, sigma(M) is activated in strain W23 in phosphate-depleted conditions, a phenomenon indirectly dependent on PhoPR, the two-component regulatory system responsible for the adaptation to phosphate starvation. These results provide further evidence for the role of sigma(M) in cell-wall stress response, and suggest that impairment of cell-wall structure is the signal activating this ECF sigma factor.
Resumo:
Calpains are calcium-dependent cysteine proteinases found in all living organisms and are involved in diverse cellular processes. Calpain-like proteins have been reported after in silico analysis of the Tritryps genome and are believed to play important roles in cell functions of trypanosomatids. We describe the characterization of a member of this family, which is differentially expressed during the life-cycle of Trypanosoma cruzi.
Resumo:
The plasticity of mature oligodendrocytes was studied in aggregating brain cell cultures at the period of maximal expression of myelin marker proteins. The protein kinase C (PKC)-activating tumor promoters mezerein and phorbol 12-myristate 13-acetate (PMA), but not the inactive phorbol ester analog 4alpha-PMA, caused a pronounced decrease of myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity. In contrast, myelin/oligodendrocyte protein (MOG) content was affected relatively little. Northern blot analyses showed a rapid reduction of MBP and PLP gene expression induced by mezerein, and both morphological and biochemical findings indicate a drastic loss of compact myelin. During the acute phase of demyelination, only a relatively small increase in cell death was perceptible by in situ end labeling and in situ nick translation. Basic fibroblast growth factor (bFGF) also reduced the levels of the oligodendroglial differentiation markers and enhanced the demyelinating effects of the tumor promoters. The present results suggest that PKC activation resulted in severe demyelination and partial loss of the oligodendrocyte-differentiated phenotype.
Resumo:
Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody-induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that maybe responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody-induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family,which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody-induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms,some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody-induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody-induced nephritis and lupus.
Resumo:
Schistosomiasis, classified by the World Health Organization as a neglected tropical disease, is an intravascular parasitic disease associated to a chronic inflammatory state. Evidence implicating inflammation in vascular dysfunction continues to mount, which, broadly defined, reflects a failure in the control of intracellular Ca2+ and consequently, vascular contraction. Therefore, we measured aorta contraction induced by 5-hydroxytryptamine (5-HT) and endothelin-1 (ET-1), two important regulators of vascular contraction. Isometric aortic contractions were determined in control and Schistosoma mansoni-infected mice. In the infected animals, 5-HT induced a 50% higher contraction in relation to controls and we also observed an increased contraction in response to Ca2+ mobilisation from sarcoplasmic reticulum. Nevertheless, Rho kinase inhibition reduced the contraction in response to 5-HT equally in both groups, discarding an increase of the contractile machinery sensitivity to Ca2+. Furthermore, no alteration was observed for contractions induced by ET-1 in both groups. Our data suggest that an immune-vascular interaction occurs in schistosomiasis, altering vascular contraction outside the mesenteric portal system. More importantly, it affects distinct intracellular signalling involved in aorta contraction, in this case increasing 5-HT receptor signalling.
Resumo:
CONTEXT AND OBJECTIVE: The optimal strategy for inducing fertility in men with congenital hypogonadotropic hypogonadism (CHH) is equivocal. Albeit a biologically plausible approach, pretreatment with recombinant FSH (rFSH) before GnRH/human chorionic gonadotropin administration has not been sufficiently assessed. The objective of the study was to test this method. DESIGN AND SETTING: This was a randomized, open-label treatment protocol at an academic medical center. PATIENTS AND INTERVENTIONS: GnRH-deficient men (CHH) with prepubertal testes (<4 mL), no cryptorchidism, and no prior gonadotropin therapy were randomly assigned to either 24 months of pulsatile GnRH therapy alone (inducing endogenous LH and FSH release) or 4 months of rFSH pretreatment followed by 24 months of GnRH therapy. Patients underwent serial testicular biopsies, ultrasound assessments of testicular volume, serum hormone measurements, and seminal fluid analyses. RESULTS: rFSH treatment increased inhibin B levels into the normal range (from 29 ± 9 to 107 ± 41 pg/mL, P < .05) and doubled testicular volume (from 1.1 ± 0.2 to 2.2 ± 0.3 mL, P < .005). Histological analysis showed proliferation of both Sertoli cells (SCs) and spermatogonia, a decreased SC to germ cell ratio (from 0.74 to 0.35), and SC cytoskeletal rearrangements. With pulsatile GnRH, the groups had similar hormonal responses and exhibited significant testicular growth. All men receiving rFSH pretreatment developed sperm in their ejaculate (7 of 7 vs 4 of 6 in the GnRH-only group) and showed trends toward higher maximal sperm counts. CONCLUSIONS: rFSH pretreatment followed by GnRH is successful in inducing testicular growth and fertility in men with CHH with prepubertal testes. rFSH not only appears to maximize the SC population but also induces morphologic changes, suggesting broader developmental roles.
Resumo:
The photoreceptor phytochrome B (phyB) interconverts between the biologically active Pfr (λmax = 730 nm) and inactive Pr (λmax = 660 nm) forms in a red/far-red-dependent fashion and regulates, as molecular switch, many aspects of light-dependent development in Arabidopsis thaliana. phyB signaling is launched by the biologically active Pfr conformer and mediated by specific protein-protein interactions between phyB Pfr and its downstream regulatory partners, whereas conversion of Pfr to Pr terminates signaling. Here, we provide evidence that phyB is phosphorylated in planta at Ser-86 located in the N-terminal domain of the photoreceptor. Analysis of phyB-9 transgenic plants expressing phospho-mimic and nonphosphorylatable phyB-yellow fluorescent protein (YFP) fusions demonstrated that phosphorylation of Ser-86 negatively regulates all physiological responses tested. The Ser86Asp and Ser86Ala substitutions do not affect stability, photoconversion, and spectral properties of the photoreceptor, but light-independent relaxation of the phyB(Ser86Asp) Pfr into Pr, also termed dark reversion, is strongly enhanced both in vivo and in vitro. Faster dark reversion attenuates red light-induced nuclear import and interaction of phyB(Ser86Asp)-YFP Pfr with the negative regulator PHYTOCHROME INTERACTING FACTOR3 compared with phyB-green fluorescent protein. These data suggest that accelerated inactivation of the photoreceptor phyB via phosphorylation of Ser-86 represents a new paradigm for modulating phytochrome-controlled signaling.