971 resultados para Irwin Weintraub
Resumo:
The Wide Angle Search for Planets (WASP) photometrically surveys a large number of nearby stars to uncover candidate extrasolar planet systems by virtue of small-amplitude light curve dips on a
Resumo:
TheWide Angle Search for Planets (WASP) survey currently operates two installations, designated SuperWASP-N and SuperWASP-S, located in the Northern and Southern hemispheres, respectively. These installations are designed to provide high time-resolution photometry for the purpose of detecting transiting extrasolar planets, asteroids, and transient events. Here, we present results from a transit-hunting observing campaign using SuperWASP-N covering a right ascension (RA) range of 06h < RA < 16h. This paper represents the fifth and final in the series of transit candidates released from the 2004 observing season. In total, 729 335 stars from 33 fields were monitored with 130 566 having sufficient precision to be scanned for transit signatures. Using a robust transit detection algorithm and selection criteria, six stars were found to have events consistent with the signature of a transiting extrasolar planet based on the photometry, including the known transiting planet XO-1b. These transit candidates are presented here along with discussion of follow-up observations and the expected number of candidates in relation to the overall observing strategy.
Resumo:
We report the discovery of WASP-3b, the third transiting exoplanet to be discovered by the WASP and SOPHIE collaboration. WASP-3b transits its host star USNO-B1.01256-0285133 every 1.846834 +/- 0.000002 d. Our high-precision radial velocity measurements present a variation with amplitude characteristic of a planetary-mass companion and in phase with the light curve. Adaptive optics imaging shows no evidence for nearby stellar companions, and line-bisector analysis excludes faint, unresolved binarity and stellar activity as the cause of the radial velocity variations. We make a preliminary spectroscopic analysis of the host star and find it to have Teff = 6400 +/- 100K and log g = 4.25 +/- 0.05 which suggests it is most likely an unevolved main-sequence star of spectral type F7-8V. Our simultaneous modelling of the transit photometry and reflex motion of the host leads us to derive a mass of 1.76+0.08-0.14 MJ and radius 1.31+0.07-0.14 RJ for WASP-3b. The proximity and relative temperature of the host star suggests that WASP-3b is one of the hottest exoplanets known, and thus has the potential to place stringent constraints on exoplanet atmospheric models.
Resumo:
The use of image processing techniques to assess the performance of airport landing lighting using images of it collected from an aircraft-mounted camera is documented. In order to assess the performance of the lighting, it is necessary to uniquely identify each luminaire within an image and then track the luminaires through the entire sequence and store the relevant information for each luminaire, that is, the total number of pixels that each luminaire covers and the total grey level of these pixels. This pixel grey level can then be used for performance assessment. The authors propose a robust model-based (MB) featurematching technique by which the performance is assessed. The development of this matching technique is the key to the automated performance assessment of airport lighting. The MB matching technique utilises projective geometry in addition to accurate template of the 3D model of a landing-lighting system. The template is projected onto the image data and an optimum match found, using nonlinear least-squares optimisation. The MB matching software is compared with standard feature extraction and tracking techniques known within the community, these being the Kanade–Lucus–Tomasi (KLT) and scaleinvariant feature transform (SIFT) techniques. The new MB matching technique compares favourably with the SIFT and KLT feature-tracking alternatives. As such, it provides a solid foundation to achieve the central aim of this research which is to automatically assess the performance of airport lighting.
Resumo:
The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.
Resumo:
This article presents a novel classification of wavelet neural networks based on the orthogonality/non-orthogonality of neurons and the type of nonlinearity employed. On the basis of this classification different network types are studied and their characteristics illustrated by means of simple one-dimensional nonlinear examples. For multidimensional problems, which are affected by the curse of dimensionality, the idea of spherical wavelet functions is considered. The behaviour of these networks is also studied for modelling of a low-dimension map.
Resumo:
This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.
Resumo:
Signal transduction pathways describe the dynamics of cellular response to input signalling molecules at receptors on the cell membrane. The Mitogen-Activated Protein Kinase (MAPK) cascade is one of such pathways that are involved in many important cellular processes including cell growth and proliferation. This paper describes a black-box model of this pathway created using an advanced two-stage identification algorithm. Identification allows us to capture the unique features and dynamics of the pathway and also opens up the possibility of regulatory control design. In the approach described, an optimal model is obtained by performing model subset selection in two stages, where the terms are first determined by a forward selection method and then modified using a backward selection model refinement. The simulation results demonstrate that the model selected using the two-stage algorithm performs better than with the forward selection method alone.
Resumo:
In this letter, a standard postnonlinear blind source separation algorithm is proposed, based on the MISEP method, which is widely used in linear and nonlinear independent component analysis. To best suit a wide class of postnonlinear mixtures, we adapt the MISEP method to incorporate a priori information of the mixtures. In particular, a group of three-layered perceptrons and a linear network are used as the unmixing system to separate sources in the postnonlinear mixtures, and another group of three-layered perceptron is used as the auxiliary network. The learning algorithm for the unmixing system is then obtained by maximizing the output entropy of the auxiliary network. The proposed method is applied to postnonlinear blind source separation of both simulation signals and real speech signals, and the experimental results demonstrate its effectiveness and efficiency in comparison with existing methods.
Resumo:
Previous papers have noted the difficulty in obtaining neural models which are stable under simulation when trained using prediction-error-based methods. Here the differences between series-parallel and parallel identification structures for training neural models are investigated. The effect of the error surface shape on training convergence and simulation performance is analysed using a standard algorithm operating in both training modes. A combined series-parallel/parallel training scheme is proposed, aiming to provide a more effective means of obtaining accurate neural simulation models. Simulation examples show the combined scheme is advantageous in circumstances where the solution space is known or suspected to be complex. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A continuous forward algorithm (CFA) is proposed for nonlinear modelling and identification using radial basis function (RBF) neural networks. The problem considered here is simultaneous network construction and parameter optimization, well-known to be a mixed integer hard one. The proposed algorithm performs these two tasks within an integrated analytic framework, and offers two important advantages. First, the model performance can be significantly improved through continuous parameter optimization. Secondly, the neural representation can be built without generating and storing all candidate regressors, leading to significantly reduced memory usage and computational complexity. Computational complexity analysis and simulation results confirm the effectiveness.
Resumo:
This paper provides an overview of the current field in wireless networks for monitoring and control. Alternative wireless technologies are introduced, together with current typical industrial applications. The focus then shifts to wireless Ethernet and the specialised requirements for wireless networked control systems (WNCS) are discussed. This is followed by a brief look at some current WNCS research, including reduced communication control.
Resumo:
Clustering analysis of data from DNA microarray hybridization studies is an essential task for identifying biologically relevant groups of genes. Attribute cluster algorithm (ACA) has provided an attractive way to group and select meaningful genes. However, ACA needs much prior knowledge about the genes to set the number of clusters. In practical applications, if the number of clusters is misspecified, the performance of the ACA will deteriorate rapidly. In fact, it is a very demanding to do that because of our little knowledge. We propose the Cooperative Competition Cluster Algorithm (CCCA) in this paper. In the algorithm, we assume that both cooperation and competition exist simultaneously between clusters in the process of clustering. By using this principle of Cooperative Competition, the number of clusters can be found in the process of clustering. Experimental results on a synthetic and gene expression data are demonstrated. The results show that CCCA can choose the number of clusters automatically and get excellent performance with respect to other competing methods.