958 resultados para Interaction fluide-structure--Modèles mathématiques
Resumo:
The development of new materials for water purification is of universal importance. Among these types of materials are layered double hydroxides (LDHs). Non-ionic materials pose a significant problem as pollutants. The interaction of methyl orange (MO) and acidic scarlet GR (GR) adsorption on hydrocalumite (Ca/Al-LDH-Cl) were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), scanning electron microscope (SEM) and near-infrared spectroscopy (NIR). The XRD results revealed that the basal spacing of Ca/Al-LDH-MO was expanded to 2.45 nm, and the MO molecules were intercalated with a inter-penetrating bilayer model in the gallery of LDH, with 49o tilting angle. Yet Ca/Al-LDH-GR was kept the same d-value as Ca/Al-LDH-Cl. The NIR spectrum for Ca/Al-LDH-MO showed a prominent band around 5994 cm-1, assigned to the combination result of the N-H stretching vibrations, which was considered as a mark to assess MO- ion intercalation into Ca/Al-LDH-Cl interlayers. From SEM images, the particle morphology of Ca/Al-LDH-MO mainly changed to irregular platelets, with a “honey-comb” like structure. Yet the Ca/Al-LDH-GR maintained regular hexagons platelets, which was similar to that of Ca/Al-LDH-Cl. All results indicated that MO- ion was intercalated into Ca/Al-LDH-Cl interlayers, and acidic scarlet GR was only adsorped upon Ca/Al-LDH-Cl surfaces.
Resumo:
Boundaries are an important field of study because they mediate almost every aspect of organizational life. They are becoming increasingly more important as organizations change more frequently and yet, despite the endemic use of the boundary metaphor in common organizational parlance, they are poorly understood. Organizational boundaries are under-theorized and researchers in related fields often simply assume their existence, without defining them. The literature on organizational boundaries is fragmented with no unifying theoretical basis. As a result, when it is recognized that an organizational boundary is "dysfunctional". there is little recourse to models on which to base remediating action. This research sets out to develop just such a theoretical model and is guided by the general question: "What is the nature of organizational boundaries?" It is argued that organizational boundaries can be conceptualised through elements of both social structure and of social process. Elements of structure include objects, coupling, properties and identity. Social processes include objectification, identification, interaction and emergence. All of these elements are integrated by a core category, or basic social process, called boundary weaving. An organizational boundary is a complex system of objects and emergent properties that are woven together by people as they interact together, objectifying the world around them, identifying with these objects and creating couplings of varying strength and polarity as well as their own fragmented identity. Organizational boundaries are characterised by the multiplicity of interconnections, a particular domain of objects, varying levels of embodiment and patterns of interaction. The theory developed in this research emerged from an exploratory, qualitative research design employing grounded theory methodology. The field data was collected from the training headquarters of the New Zealand Army using semi-structured interviews and follow up observations. The unit of analysis is an organizational boundary. Only one research context was used because of the richness and multiplicity of organizational boundaries that were present. The model arose, grounded in the data collected, through a process of theoretical memoing and constant comparative analysis. Academic literature was used as a source of data to aid theory development and the saturation of some central categories. The final theory is classified as middle range, being substantive rather than formal, and is generalizable across medium to large organizations in low-context societies. The main limitation of the research arose from the breadth of the research with multiple lines of inquiry spanning several academic disciplines, with some relevant areas such as the role of identity and complexity being addressed at a necessarily high level. The organizational boundary theory developed by this research replaces the typology approaches, typical of previous theory on organizational boundaries and reconceptualises the nature of groups in organizations as well as the role of "boundary spanners". It also has implications for any theory that relies on the concept of boundaries, such as general systems theory. The main contribution of this research is the development of a holistic model of organizational boundaries including an explanation of the multiplicity of boundaries . no organization has a single definable boundary. A significant aspect of this contribution is the integration of aspects of complexity theory and identity theory to explain the emergence of higher-order properties of organizational boundaries and of organizational identity. The core category of "boundary weaving". is a powerful new metaphor that significantly reconceptualises the way organizational boundaries may be understood in organizations. It invokes secondary metaphors such as the weaving of an organization's "boundary fabric". and provides managers with other metaphorical perspectives, such as the management of boundary friction, boundary tension, boundary permeability and boundary stability. Opportunities for future research reside in formalising and testing the theory as well as developing analytical tools that would enable managers in organizations to apply the theory in practice.
Resumo:
Articular cartilage is a complex structure with an architecture in which fluid-swollen proteoglycans constrained within a 3D network of collagen fibrils. Because of the complexity of the cartilage structure, the relationship between its mechanical behaviours at the macroscale level and its components at the micro-scale level are not completely understood. The research objective in this thesis is to create a new model of articular cartilage that can be used to simulate and obtain insight into the micro-macro-interaction and mechanisms underlying its mechanical responses during physiological function. The new model of articular cartilage has two characteristics, namely: i) not use fibre-reinforced composite material idealization ii) Provide a framework for that it does probing the micro mechanism of the fluid-solid interaction underlying the deformation of articular cartilage using simple rules of repartition instead of constitutive / physical laws and intuitive curve-fitting. Even though there are various microstructural and mechanical behaviours that can be studied, the scope of this thesis is limited to osmotic pressure formation and distribution and their influence on cartilage fluid diffusion and percolation, which in turn governs the deformation of the compression-loaded tissue. The study can be divided into two stages. In the first stage, the distributions and concentrations of proteoglycans, collagen and water were investigated using histological protocols. Based on this, the structure of cartilage was conceptualised as microscopic osmotic units that consist of these constituents that were distributed according to histological results. These units were repeated three-dimensionally to form the structural model of articular cartilage. In the second stage, cellular automata were incorporated into the resulting matrix (lattice) to simulate the osmotic pressure of the fluid and the movement of water within and out of the matrix; following the osmotic pressure gradient in accordance with the chosen rule of repartition of the pressure. The outcome of this study is the new model of articular cartilage that can be used to simulate and study the micromechanical behaviours of cartilage under different conditions of health and loading. These behaviours are illuminated at the microscale level using the socalled neighbourhood rules developed in the thesis in accordance with the typical requirements of cellular automata modelling. Using these rules and relevant Boundary Conditions to simulate pressure distribution and related fluid motion produced significant results that provided the following insight into the relationships between osmotic pressure gradient and associated fluid micromovement, and the deformation of the matrix. For example, it could be concluded that: 1. It is possible to model articular cartilage with the agent-based model of cellular automata and the Margolus neighbourhood rule. 2. The concept of 3D inter connected osmotic units is a viable structural model for the extracellular matrix of articular cartilage. 3. Different rules of osmotic pressure advection lead to different patterns of deformation in the cartilage matrix, enabling an insight into how this micromechanism influences macromechanical deformation. 4. When features such as transition coefficient were changed, permeability (representing change) is altered due to the change in concentrations of collagen, proteoglycans (i.e. degenerative conditions), the deformation process is impacted. 5. The boundary conditions also influence the relationship between osmotic pressure gradient and fluid movement at the micro-scale level. The outcomes are important to cartilage research since we can use these to study the microscale damage in the cartilage matrix. From this, we are able to monitor related diseases and their progression leading to potential insight into drug-cartilage interaction for treatment. This innovative model is an incremental progress on attempts at creating further computational modelling approaches to cartilage research and other fluid-saturated tissues and material systems.
Resumo:
Many older people have difficulties using modern consumer products due to increased product complexity both in terms of functionality and interface design. Previous research has shown that older people have more difficulty in using complex devices intuitively when compared to the younger. Furthermore, increased life expectancy and a falling birth rate have been catalysts for changes in world demographics over the past two decades. This trend also suggests a proportional increase of older people in the work-force. This realisation has led to research on the effective use of technology by older populations in an effort to engage them more productively and to assist them in leading independent lives. Ironically, not enough attention has been paid to the development of interaction design strategies that would actually enable older users to better exploit new technologies. Previous research suggests that if products are designed to reflect people's prior knowledge, they will appear intuitive to use. Since intuitive interfaces utilise domain-specific prior knowledge of users, they require minimal learning for effective interaction. However, older people are very diverse in their capabilities and domain-specific prior knowledge. In addition, ageing also slows down the process of acquiring new knowledge. Keeping these suggestions and limitations in view, the aim of this study was set to investigate possible approaches to developing interfaces that facilitate their intuitive use by older people. In this quest to develop intuitive interfaces for older people, two experiments were conducted that systematically investigated redundancy (the use of both text and icons) in interface design, complexity of interface structure (nested versus flat), and personal user factors such as cognitive abilities, perceived self-efficacy and technology anxiety. All of these factors could interfere with intuitive use. The results from the first experiment suggest that, contrary to what was hypothesised, older people (65+ years) completed the tasks on the text only based interface design faster than on the redundant interface design. The outcome of the second experiment showed that, as expected, older people took more time on a nested interface. However, they did not make significantly more errors compared with younger age groups. Contrary to what was expected, older age groups also did better under anxious conditions. The findings of this study also suggest that older age groups are more heterogeneous in their capabilities and their intuitive use of contemporary technological devices is mediated more by domain-specific technology prior knowledge and by their cognitive abilities, than chronological age. This makes it extremely difficult to develop product interfaces that are entirely intuitive to use. However, by keeping in view the cognitive limitations of older people when interfaces are developed, and using simple text-based interfaces with flat interface structure, would help them intuitively learn and use complex technological products successfully during early encounter with a product. These findings indicate that it might be more pragmatic if interfaces are designed for intuitive learning rather than for intuitive use. Based on this research and the existing literature, a model for adaptable interface design as a strategy for developing intuitively learnable product interfaces was proposed. An adaptable interface can initially use a simple text only interface to help older users to learn and successfully use the new system. Over time, this can be progressively changed to a symbols-based nested interface for more efficient and intuitive use.
Resumo:
Under seismic loads neither the response of the pile nor the response of ground are independent of each other, contrary what is normally assumed. In seismic design of buildings, dynamic response of a structure is determined by assuming a fixed base on sub-grade and neglecting the physical interaction between foundation and soil profile in which it is embedded. However, the seismic response of pile foundations in vibration sensitive soil profiles is significantly affected by the behaviour of supporting soil. This research uses validated Finite Element techniques to simulate the seismic behaviour of pile foundations embedded in multilayered vibration sensitive soils.
Resumo:
Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, Portable Water-filled barriers (PWFB) face challenges such as large lateral displacements, tearing and breakage during impact; especially at higher speeds. This study explores the use of composite action to enhance the crashworthiness of PWFBs and enable their usage at higher speeds. Initially, energy absorption capability of water in PWFB is investigated. Then, composite action of the PWFB with the introduction of steel frame is considered to evaluate its enhanced impact performance. Findings of the study show that the initial height of the impact must be lower than the free surface level of water in a PWFB in order for the water to provide significant crash energy absorption. In general, an impact of a road barrier with 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacements and sloshing response. Information from this research will aid in the design of new generation roadside safety structures aimed to increase safety in modern roadways.
Resumo:
Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, there are challenges when using portable water-filled barriers (PWFBs) such as large lateral displacements as well as tearing and breakage during impact, especially at higher speeds. In this study, the authors explore the use of composite action to enhance the crashworthiness of PWFBs and enable their use at higher speeds. Initially, we investigated the energy absorption capability of water in PWFB. Then, we considered the composite action of a PWFB with the introduction of a steel frame to evaluate its impact on performance. Findings of the study show that the initial height of impact must be lower than the free surface level of water in a PWFB for the water to provide significant crash energy absorption. In general, impact of a road barrier that is 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacement and sloshing response. Information from this research will aid in the design of next generation roadside safety structures aimed to increase safety on modern roadways.
Resumo:
We introduce Claude Lévi Strauss' canonical formula (CF), an attempt to rigorously formalise the general narrative structure of myth. This formula utilises the Klein group as its basis, but a recent work draws attention to its natural quaternion form, which opens up the possibility that it may require a quantum inspired interpretation. We present the CF in a form that can be understood by a non-anthropological audience, using the formalisation of a key myth (that of Adonis) to draw attention to its mathematical structure. The future potential formalisation of mythological structure within a quantum inspired framework is proposed and discussed, with a probabilistic interpretation further generalising the formula
Resumo:
The results of a study on the influence of the nonparabolicity of the free carriers dispersion law on the propagation of surface polaritons (SPs) located near the interface between an n-type semiconductor and a metal arc reported. The semiconductor plasma is assumed to be warm and nonisothermal. The nonparabolicity of the electron dispersion law has two effects. The first one is associated with nonlinear self-interaction of the SPs. The nonlinear dispersion equation and the nonlinear Schrodinger equation for the amplitude of the SP envelope are obtained. The nonlinear evolution of the SP is studied on the base of the above mentioned equations. The second effect results in third harmonics generation. Analysis shows that these third harmonics may appear as a pure surface polariton, a pseudosurface polariton, or a superposition of a volume wave and a SP depending on the wave frequency, electron density and lattice dielectric constant.
Resumo:
The nonlinear effect of hf surface waves self-interaction in a magnetoactive planar plasma waveguide is studies. The waveguide structure under consideration can be formed by gaseous or semiconducting homogeneous plasma, which is limited by a perfectly conducting metal surface. The surface (localized near the surface) wave perturbations propagating on the plasma-metal boundary perpendicular to the constant external magnetic field, are investigated. The nonlinear frequency shift connected with interaction of the second harmonic and static surface perturbations with the main frequency wave, is determined using the approximation of weak nonlinearity. It is shown that the process of double-frequency signal generation is the dissipative one as a result of bulk wave excitation on the surface wave second harmonic.
Resumo:
The problem concerning the excitation of high-frequency surface waves (SW) propagating across an external magnetic field at a plasma-metal interface is considered. A homogeneous electric pump field is applied in the direction transverse with respect to the plasma-metal interface. Two high-frequency SW from different frequency ranges of existence and propagating in different directions are shown to be excited in this pump field. The instability threshold pump-field values and increments are obtained for different parameters of the considered waveguide structure. The results associated with saturation of the nonlinear instability due to self-interaction effects of the excited SW are given as well. The results are appropriate for both gaseous and semiconductor plasmas.
Resumo:
Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection. Antioxid. Redox Signal. 14, 1729–1760.
Resumo:
In the structure of the title magnesium complex with the phenoxy herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D), [Mg(H2O)5(C8H5Cl2O3)]+ C8H5Cl2O3)- . 0.5H2O, the discrete cationic MgO6 complex units comprise a carboxyl O-donor from a monodentate 2,4-D cationic ligand and five water molecules in a slightly distorted octahedral coordination. The 2,4-D anions are linked to the complex units through duplex water O-H...O(carboxyl) hydrogen bonds through the coordinated water molecules. In the crystal inter-unit O-H...O hydrogen-bonding interactions involving coordinated water molecules as well as the hemi-hydrate solvate molecule with carboxyl O-atom acceptors, give a two-dimensional layered structure lying parallel (001), in which pi-pi ligand-cation interactions [minimum ring centroid separation, 3.6405(17)A] and a short O-H...Cl interaction [3.345(2)A] are also found.
Resumo:
A series of kaolinite–methanol complexes with different basal spacings were synthesized using guest displacement reactions of the intercalation precursors kaolinite–N-methyformamide (Kaol–NMF), kaolinite–urea (Kaol–U), or kaolinite–dimethylsulfoxide (Kaol–DMSO), with methanol (Me). The interaction of methanol with kaolinite was examined using X-ray diffraction (XRD), infrared spectroscopy (IR), and nuclear magnetic resonance (NMR). Kaolinite (Kaol) initially intercalated with N-methyformamide (NMF), urea (U), or dimethylsulfoxide (DMSO) before subsequent reaction with Me formed final kaolinite–methanol (Kaol–Me) complexes characterized by basal spacing ranging between 8.6 Å and 9.6 Å, depending on the pre-intercalated reagent. Based on a comparative analysis of the three Kaol–Me displacement intercalation complexes, three types of Me intercalation products were suggested to have been present in the interlayer space of Kaol: (1) molecules grafted onto a kaolinite octahedral sheet in the form of a methoxy group (Al-O-C bond); (2) mobile Me and/or water molecules kept in the interlayer space via hydrogen bonds that could be partially removed during drying; and (3) a mixture of types 1 and 2, with the methoxy group (Al-O-C bond) grafted onto the Kaol sheet and mobile Me and/or water molecules coexisted in the system after the displacement reaction by Me. Various structural models that reflected four possible complexes of Kaol–Me were constructed for use in a complimentary computational study. Results from the calculation of the methanol kaolinite interaction indicate that the hydroxyl oxygen atom of methanol plays the dominant role in the stabilization and localization of the molecule intercalated in the interlayer space, and that water existing in the intercalated Kaol layer is inevitable.