539 resultados para Integrals, Hyperelliptic
Resumo:
Part I
Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.
Part II
The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.
Resumo:
The Maxwell integral equations of transfer are applied to a series of problems involving flows of arbitrary density gases about spheres. As suggested by Lees a two sided Maxwellian-like weighting function containing a number of free parameters is utilized and a sufficient number of partial differential moment equations is used to determine these parameters. Maxwell's inverse fifth-power force law is used to simplify the evaluation of the collision integrals appearing in the moment equations. All flow quantities are then determined by integration of the weighting function which results from the solution of the differential moment system. Three problems are treated: the heat-flux from a slightly heated sphere at rest in an infinite gas; the velocity field and drag of a slowly moving sphere in an unbounded space; the velocity field and drag torque on a slowly rotating sphere. Solutions to the third problem are found to both first and second-order in surface Mach number with the secondary centrifugal fan motion being of particular interest. Singular aspects of the moment method are encountered in the last two problems and an asymptotic study of these difficulties leads to a formal criterion for a "well posed" moment system. The previously unanswered question of just how many moments must be used in a specific problem is now clarified to a great extent.
Resumo:
I. PHOSPHORESCENCE AND THE TRUE LIFETIME OF TRIPLET STATES IN FLUID SOLUTIONS
Phosphorescence has been observed in a highly purified fluid solution of naphthalene in 3-methylpentane (3-MP). The phosphorescence lifetime of C10H8 in 3-MP at -45 °C was found to be 0.49 ± 0.07 sec, while that of C10D8 under identical conditions is 0.64 ± 0.07 sec. At this temperature 3-MP has the same viscosity (0.65 centipoise) as that of benzene at room temperature. It is believed that even these long lifetimes are dominated by impurity quenching mechanisms. Therefore it seems that the radiationless decay times of the lowest triplet states of simple aromatic hydrocarbons in liquid solutions are sensibly the same as those in the solid phase. A slight dependence of the phosphorescence lifetime on solvent viscosity was observed in the temperature region, -60° to -18°C. This has been attributed to the diffusion-controlled quenching of the triplet state by residual impurity, perhaps oxygen. Bimolecular depopulation of the triplet state was found to be of major importance over a large part of the triplet decay.
The lifetime of triplet C10H8 at room temperature was also measured in highly purified benzene by means of both phosphorescence and triplet-triplet absorption. The lifetime was estimated to be at least ten times shorter than that in 3-MP. This is believed to be due not only to residual impurities in the solvent but also to small amounts of impurities produced through unavoidable irradiation by the excitation source. In agreement with this idea, lifetime shortening caused by intense flashes of light is readily observed. This latter result suggests that experiments employing flash lamp techniques are not suitable for these kinds of studies.
The theory of radiationless transitions, based on Robinson's theory, is briefly outlined. A simple theoretical model which is derived from Fano's autoionization gives identical result.
Il. WHY IS CONDENSED OXYGEN BLUE?
The blue color of oxygen is mostly derived from double transitions. This paper presents a theoretical calculation of the intensity of the double transition (a 1Δg) (a 1Δg)←(X 3Σg-) (X 3Σg-), using a model based on a pair of oxygen molecules at a fixed separation of 3.81 Å. The intensity enhancement is assumed to be derived from the mixing (a 1Δg) (a 1Δg) ~~~ (X 3Σg-) (X 3Σu-) and (a 1Δg) (1Δu) ~~~ (X 3Σg-) (X 3Σg-). Matrix elements for these interactions are calculated using a π-electron approximation for the pair system. Good molecular wavefunctions are used for all but the perturbing (B 3Σu-) state, which is approximated in terms of ground state orbitals. The largest contribution to the matrix elements arises from large intramolecular terms multiplied by intermolecular overlap integrals. The strength of interaction depends not only on the intermolecular separation of the two oxygen molecules, but also as expected on the relative orientation. Matrix elements are calculated for different orientations, and the angular dependence is fit to an analytical expression. The theory therefore not only predicts an intensity dependence on density but also one on phase at constant density. Agreement between theory and available experimental results is satisfactory considering the nature of the approximation, and indicates the essential validity of the overall approach to this interesting intensity enhancement problem.
Resumo:
Let M be an Abelian W*-algebra of operators on a Hilbert space H. Let M0 be the set of all linear, closed, densely defined transformations in H which commute with every unitary operator in the commutant M’ of M. A well known result of R. Pallu de Barriere states that if ɸ is a normal positive linear functional on M, then ɸ is of the form T → (Tx, x) for some x in H, where T is in M. An elementary proof of this result is given, using only those properties which are consequences of the fact that ReM is a Dedekind complete Riesz space with plenty of normal integrals. The techniques used lead to a natural construction of the class M0, and an elementary proof is given of the fact that a positive self-adjoint transformation in M0 has a unique positive square root in M0. It is then shown that when the algebraic operations are suitably defined, then M0 becomes a commutative algebra. If ReM0 denotes the set of all self-adjoint elements of M0, then it is proved that ReM0 is Dedekind complete, universally complete Riesz spaces which contains ReM as an order dense ideal. A generalization of the result of R. Pallu de la Barriere is obtained for the Riesz space ReM0 which characterizes the normal integrals on the order dense ideals of ReM0. It is then shown that ReM0 may be identified with the extended order dual of ReM, and that ReM0 is perfect in the extended sense.
Some secondary questions related to the Riesz space ReM are also studied. In particular it is shown that ReM is a perfect Riesz space, and that every integral is normal under the assumption that every decomposition of the identity operator has non-measurable cardinal. The presence of atoms in ReM is examined briefly, and it is shown that ReM is finite dimensional if and only if every order bounded linear functional on ReM is a normal integral.
Resumo:
[ES]El objetivo de este proyecto es diseñar un mecanismo que proporcione desplazamientos XY en una plataforma empleando barras flexibles. Para ello se partirá de la teoría de vigas de Euler-Bernoulli con el objeto de conocer la relación entra las cargas y momentos actuantes en los extremos y la deformada de las barras. Se utilizarán integrales elípticas y métodos numéricos que se implementarán en un programa Matlab para resolver las ecuaciones que facilitan el cálculo de la elástica. Por último, se diseñará el mecanismo y se construirá un prototipo para comparar resultados analíticos y experimentales.
Resumo:
Nesta Tese desenvolvemos várias abordagens "Darbouxianas"para buscar integrais primeiras (elementares e Liouvillianas) de equações diferenciais ordinárias de segunda ordem (2EDOs) racionais. Os algoritmos (semi-algoritmos) que desenvolvemos seguem a linha do trabalho de Prelle e Singer. Basicamente, os métodos que buscam integrais primeiras elementares são uma extensão da técnica desenvolvida por Prelle e Singer para encontrar soluções elementares de equações diferenciais ordinárias de primeira ordem (1EDOs) racionais. O procedimento que lida com 2EDOs racionais que apresentam integrais primeiras Liouvillianas é baseado em uma extensão ao nosso método para encontrar soluções Liouvillianas de 1EDOs racionais. A ideia fundamental por tras do nosso trabalho consiste em que os fatores integrantes para 1-formas polinomiais geradas pela diferenciação de funções elementares e Liouvillianas são formados por certos polinômios denominados polinômios de Darboux. Vamos mostrar como combinar esses polinômios de Darboux para construir fatores integrantes e, de posse deles, determinar integrais primeiras. Vamos ainda discutir algumas implementações computacionais dos semi-algoritmos.
Resumo:
Esta dissertação aplica a regularização por entropia máxima no problema inverso de apreçamento de opções, sugerido pelo trabalho de Neri e Schneider em 2012. Eles observaram que a densidade de probabilidade que resolve este problema, no caso de dados provenientes de opções de compra e opções digitais, pode ser descrito como exponenciais nos diferentes intervalos da semireta positiva. Estes intervalos são limitados pelos preços de exercício. O critério de entropia máxima é uma ferramenta poderosa para regularizar este problema mal posto. A família de exponencial do conjunto solução, é calculado usando o algoritmo de Newton-Raphson, com limites específicos para as opções digitais. Estes limites são resultados do princípio de ausência de arbitragem. A metodologia foi usada em dados do índice de ação da Bolsa de Valores de São Paulo com seus preços de opções de compra em diferentes preços de exercício. A análise paramétrica da entropia em função do preços de opções digitais sínteticas (construídas a partir de limites respeitando a ausência de arbitragem) mostraram valores onde as digitais maximizaram a entropia. O exemplo de extração de dados do IBOVESPA de 24 de janeiro de 2013, mostrou um desvio do princípio de ausência de arbitragem para as opções de compra in the money. Este princípio é uma condição necessária para aplicar a regularização por entropia máxima a fim de obter a densidade e os preços. Nossos resultados mostraram que, uma vez preenchida a condição de convexidade na ausência de arbitragem, é possível ter uma forma de smile na curva de volatilidade, com preços calculados a partir da densidade exponencial do modelo. Isto coloca o modelo consistente com os dados do mercado. Do ponto de vista computacional, esta dissertação permitiu de implementar, um modelo de apreçamento que utiliza o princípio de entropia máxima. Três algoritmos clássicos foram usados: primeiramente a bisseção padrão, e depois uma combinação de metodo de bisseção com Newton-Raphson para achar a volatilidade implícita proveniente dos dados de mercado. Depois, o metodo de Newton-Raphson unidimensional para o cálculo dos coeficientes das densidades exponenciais: este é objetivo do estudo. Enfim, o algoritmo de Simpson foi usado para o calculo integral das distribuições cumulativas bem como os preços do modelo obtido através da esperança matemática.
Analytical approximations for the modal acoustic impedances of simply supported, rectangular plates.
Resumo:
Coupling of the in vacuo modes of a fluid-loaded, vibrating structure by the resulting acoustic field, while known to be negligible for sufficiently light fluids, is still only partially understood. A particularly useful structural geometry for the study of this problem is the simply supported, rectangular flat plate, since it exhibits all the relevant physical features while still admitting an analytical description of the modes. Here the influence of the fluid can be expressed in terms of a set of doubly infinite integrals over wave number: the modal acoustic impedances. Closed-form solutions for these impedances do not exist and, while their numerical evaluation is possible, it greatly increases the computational cost of solving the coupled system of modal equations. There is thus a need for accurate analytical approximations. In this work, such approximations are sought in the limit where the modal wavelength is small in comparison with the acoustic wavelength and the plate dimensions. It is shown that contour integration techniques can be used to derive analytical formulas for this regime and that these formulas agree closely with the results of numerical evaluations. Previous approximations [Davies, J. Sound Vib. 15(1), 107-126 (1971)] are assessed in the light of the new results and are shown to give a satisfactory description of real impedance components, but (in general) erroneous expressions for imaginary parts.
Resumo:
Bayesian formulated neural networks are implemented using hybrid Monte Carlo method for probabilistic fault identification in cylindrical shells. Each of the 20 nominally identical cylindrical shells is divided into three substructures. Holes of (12±2) mm in diameter are introduced in each of the substructures and vibration data are measured. Modal properties and the Coordinate Modal Assurance Criterion (COMAC) are utilized to train the two modal-property-neural-networks. These COMAC are calculated by taking the natural-frequency-vector to be an additional mode. Modal energies are calculated by determining the integrals of the real and imaginary components of the frequency response functions over bandwidths of 12% of the natural frequencies. The modal energies and the Coordinate Modal Energy Assurance Criterion (COMEAC) are used to train the two frequency-response-function-neural-networks. The averages of the two sets of trained-networks (COMAC and COMEAC as well as modal properties and modal energies) form two committees of networks. The COMEAC and the COMAC are found to be better identification data than using modal properties and modal energies directly. The committee approach is observed to give lower standard deviations than the individual methods. The main advantage of the Bayesian formulation is that it gives identities of damage and their respective confidence intervals.
Resumo:
The feasibility of vibration data to identify damage in a population of cylindrical shells is assessed. Vibration data from a population of cylinders were measured and modal analysis was employed to obtain natural frequencies and mode shapes. The mode shapes were transformed into the Coordinate Modal Assurance Criterion (COMAC). The natural frequencies and the COMAC before and after damage for a population of structures show that modal analysis is a viable route to damage identification in a population of nominally identical cylinders. Modal energies, which are defined as the integrals of the real and imaginary components of the frequency response functions over various frequency ranges, were extracted and transformed into the Coordinate Modal Energy Assurance Criterion (COMEAC). The COMEAC before and after damage show that using modal energies is a viable approach to damage identification in a population of cylinders.
Resumo:
Indentation of linearly viscoelastic materials is explored using elastic-viscoelastic correspondence analysis for both conical-pyramidal and spherical indentation. Boltzmann hereditary integrals are used to generate displacement-time solutions for loading at constant rate and creep following ramp loading. Experimental data for triangle- and trapezoidal-loading are examined for commercially-available polymers and compared with analytical solutions. Emphasis is given to the use of multiple experiments to test the fidelity and predictive capability of the obtained material creep function. Plastic deformation occurs in sharp indentation of glassy polymers and is found to complicate the viscoelastic analysis. A new method is proposed for estimating a material time-constant from peak displacement or hardness data obtained in pyramidal indentation tests performed at different loading rates.
Resumo:
The ground state of a double quantum-dot structure is studied by a simplified Anderson-type model. Numerical calculations reveal that the ground-state level of this artificial molecule increases with the increasing single particle level of the dot, and also increases with the decreasing transfer integrals. We show the staircase feature of the electron occupation and the properties of the ground-state eigenvector by varying the;single particle level of the dot.
Resumo:
Wavefunctions of electronic Wannier-Stark states in a superlattice are calculated with a finite Kronig-Penney model. Overlap integrals between electron and heavy-hole wavefunctions centred in the same well layer, and in first- and second-neighbour wells are calculated as functions of the applied field. The results show good agreement with experimental results on photoluminescence. The problem is also treated by a one-band approximation method, which gives a closed expression for the wavefunction of the Wannier-Stark states; this is compared with the results of accurate calculations with the Kronig-Penney model.
Resumo:
Bloch modes can be excited in planar array due to its periodic lateral refractive index. The power coupled into each eigenmode of the array waveguides is calculated through the overlap integrals of the input field with the eigenmode fields of the coupled infinite array waveguides projected onto the x-axis. Low losses can be obtained if the transition from the array to the free propagation region is adiabatic. Due to the finite resolution of lithographic process the gap between the waveguides will stop abruptly, however, when the waveguides come into too close together. Calculation results show that losses will occur at this discontinuity, which are dependent on the ratio of the gap between the waveguides and grating pitch and on the confinement of field in the array waveguides. Tapered waveguides and low index contrast between the core and cladding layers can lower the transmitted losses.
Resumo:
As one primary component of Vitamin B-3, nicotinic acid [pyridine 3-carboxylic acid] was synthesized, and calorimetric study and thermal analysis for this compound were performed. The low-temperature heat capacity of nicotinic acid was measured with a precise automated adiabatic calorimeter over the temperature rang from 79 to 368 K. No thermal anomaly or phase transition was observed in this temperature range. A solid-to-solid transition at T-trs = 451.4 K, a solid-to-liquid transition at T-fus = 509.1 K and a thermal decomposition at T-d = 538.8 K were found through the DSC and TG-DTG techniques. The molar enthalpies of these transitions were determined to be Delta(trs)H(m =) 0.81 kJ mol(-1), Delta(fus)H(m) 27.57 kJ mol(-1) and Delta(d)H(m) = 62.38 kJ mol(-1), respectively, by the integrals of the peak areas of the DSC curves.