868 resultados para Integer linear programming
Resumo:
In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact.
Resumo:
Poster presented in the 24th European Symposium on Computer Aided Process Engineering (ESCAPE 24), Budapest, Hungary, June 15-18, 2014.
Resumo:
In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.
Resumo:
Purpose – This paper sets out to study a production-planning problem for printed circuit board (PCB) assembly. A PCB assembly company may have a number of assembly lines for production of several product types in large volume. Design/methodology/approach – Pure integer linear programming models are formulated for assigning the product types to assembly lines, which is the line assignment problem, with the objective of minimizing the total production cost. In this approach, unrealistic assignment, which was suffered by previous researchers, is avoided by incorporating several constraints into the model. In this paper, a genetic algorithm is developed to solve the line assignment problem. Findings – The procedure of the genetic algorithm to the problem and a numerical example for illustrating the models are provided. It is also proved that the algorithm is effective and efficient in dealing with the problem. Originality/value – This paper studies the line assignment problem arising in a PCB manufacturing company in which the production volume is high.
Resumo:
Using a wide range of operational research (OR) optimization examples, Applied Operational Research with SAS demonstrates how the OR procedures in SAS work. The book is one of the first to extensively cover the application of SAS procedures to OR problems, such as single criterion optimization, project management decisions, printed circuit board assembly, and multiple criteria decision making. The text begins with the algorithms and methods for linear programming, integer linear programming, and goal programming models. It then describes the principles of several OR procedures in SAS. Subsequent chapters explain how to use these procedures to solve various types of OR problems. Each of these chapters describes the concept of an OR problem, presents an example of the problem, and discusses the specific procedure and its macros for the optimal solution of the problem. The macros include data handling, model building, and report writing. While primarily designed for SAS users in OR and marketing analytics, the book can also be used by readers interested in mathematical modeling techniques. By formulating the OR problems as mathematical models, the authors show how SAS can solve a variety of optimization problems.
Resumo:
This paper aims to help supply chain managers to determine the value of retailer-supplier partnership initiatives beyond information sharing (IS) according to their specific business environment under time-varying demand conditions. For this purpose, we use integer linear programming models to quantify the benefits that can be accrued by a retailer, a supplier and system as a whole from shift in inventory ownership and shift in decision-making power with that of IS. The results of a detailed numerical study pertaining to static time horizon reveal that the shift in inventory ownership provides system-wide cost benefits in specific settings. Particularly, when it induces the retailer to order larger quantities and the supplier also prefers such orders due to significantly high setup and shipment costs. We observe that the relative benefits of shift in decision-making power are always higher than the shift in inventory ownership under all the conditions. The value of the shift in decision-making power is greater than IS particularly when the variability of underlying demand is low and time-dependent variation in production cost is high. However, when the shipment cost is negligible and order issuing efficiency of the supplier is low, the cost benefits of shift in decision-making power beyond IS are not significant. © 2012 Taylor & Francis.
Resumo:
In the contemporary customer-driven supply chain, maximization of customer service plays an equally important role as minimization of costs for a company to retain and increase its competitiveness. This article develops a multiple-criteria optimization approach, combining the analytic hierarchy process (AHP) and an integer linear programming (ILP) model, to aid the design of an optimal logistics distribution network. The proposed approach outperforms traditional cost-based optimization techniques because it considers both quantitative and qualitative factors and also aims at maximizing the benefits of deliverer and customers. In the approach, the AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to some critical customer-oriented criteria. The results of AHP prioritization are utilized as the input of the ILP model, the objective of which is to select the best warehouses at the lowest possible cost. In this article, two commercial packages are used: including Expert Choice and LINDO.
Resumo:
We consider point sets in (Z^2,n) where no three points are on a line – also called caps or arcs. For the determination of caps with maximum cardinality and complete caps with minimum cardinality we provide integer linear programming formulations and identify some values for small n.
Resumo:
One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.
Resumo:
Firms worldwide are taking major initiatives to reduce the carbon footprint of their supply chains in response to the growing governmental and consumer pressures. In real life, these supply chains face stochastic and non-stationary demand but most of the studies on inventory lot-sizing problem with emission concerns consider deterministic demand. In this paper, we study the inventory lot-sizing problem under non-stationary stochastic demand condition with emission and cycle service level constraints considering carbon cap-and-trade regulatory mechanism. Using a mixed integer linear programming model, this paper aims to investigate the effects of emission parameters, product- and system-related features on the supply chain performance through extensive computational experiments to cover general type business settings and not a specific scenario. Results show that cycle service level and demand coefficient of variation have significant impacts on total cost and emission irrespective of level of demand variability while the impact of product's demand pattern is significant only at lower level of demand variability. Finally, results also show that increasing value of carbon price reduces total cost, total emission and total inventory and the scope of emission reduction by increasing carbon price is greater at higher levels of cycle service level and demand coefficient of variation. The analysis of results helps supply chain managers to take right decision in different demand and service level situations.
Resumo:
Ebben a tanulmányban a szerző egy új harmóniakereső metaheurisztikát mutat be, amely a minimális időtartamú erőforrás-korlátos ütemezések halmazán a projekt nettó jelenértékét maximalizálja. Az optimális ütemezés elméletileg két egész értékű (nulla-egy típusú) programozási feladat megoldását jelenti, ahol az első lépésben meghatározzuk a minimális időtartamú erőforrás-korlátos ütemezések időtartamát, majd a második lépésben az optimális időtartamot feltételként kezelve megoldjuk a nettó jelenérték maximalizálási problémát minimális időtartamú erőforrás-korlátos ütemezések halmazán. A probléma NP-hard jellege miatt az egzakt megoldás elfogadható idő alatt csak kisméretű projektek esetében képzelhető el. A bemutatandó metaheurisztika a Csébfalvi (2007) által a minimális időtartamú erőforrás-korlátos ütemezések időtartamának meghatározására és a tevékenységek ennek megfelelő ütemezésére kifejlesztett harmóniakereső metaheurisztika továbbfejlesztése, amely az erőforrás-felhasználási konfliktusokat elsőbbségi kapcsolatok beépítésével oldja fel. Az ajánlott metaheurisztika hatékonyságának és életképességének szemléltetésére számítási eredményeket adunk a jól ismert és népszerű PSPLIB tesztkönyvtár J30 részhalmazán futtatva. Az egzakt megoldás generálásához egy korszerű MILP-szoftvert (CPLEX) alkalmaztunk. _______________ This paper presents a harmony search metaheuristic for the resource-constrained project scheduling problem with discounted cash flows. In the proposed approach, a resource-constrained project is characterized by its „best” schedule, where best means a makespan minimal resource constrained schedule for which the net present value (NPV) measure is maximal. Theoretically the optimal schedule searching process is formulated as a twophase mixed integer linear programming (MILP) problem, which can be solved for small-scale projects in reasonable time. The applied metaheuristic is based on the "conflict repairing" version of the "Sounds of Silence" harmony search metaheuristic developed by Csébfalvi (2007) for the resource-constrained project scheduling problem (RCPSP). In order to illustrate the essence and viability of the proposed harmony search metaheuristic, we present computational results for a J30 subset from the well-known and popular PSPLIB. To generate the exact solutions a state-of-the-art MILP solver (CPLEX) was used.
Resumo:
A készpénz-optimalizálás az operációkutatás régóta kutatott területe. Ebben a cikkben valós adatokon mutatok be egy banki készpénz-optimalizálást, melyet lineáris programozási feladatok segítségével végeztem el. A cikkben összehasonlítottam a determinisztikus és a sztochasztikus megközelítéseket is. A hagyományos készpénz-optimalizáción két területen léptem túl: egyrészt vizsgáltam a bankfiók valutagazdálkodását is, másrészről a bankfiókok közötti készpénzszállítás lehetőségét is. A vegyes egészértékű lineáris programozási feladatok megoldására a glpk nevű szabad hozzáférésű szoftvert használtam, így a cikkből képet kaphatunk a megoldó (solver) felhasználhatóságáról és korlátairól is. ___________ In recent years both operational research and quantitative ¯nance have paid much attention to cash management issues. In this paper we present a cash management study which is based on real world data and uses a mixed integer linear programming (MILP) model as the main tool. In the paper we compare deterministic and stochastic approaches. The classical cash management problem is extended in two ways: we considered the possibility of bank offices keeping more than one currency and also investigated the opportunity of cash transports between bank offices. The MILP problem was solved with glpk (GNU Linear Programming Kit), a free software. The reader can also get a feel of how to use this solver.
Resumo:
This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.