972 resultados para Insulin Secretion
Resumo:
Background: Primary hyperparathyroidism occurs in only 10%-30% of patients with multiple endocrine neoplasia type 2A (MEN2A), rarely as the sole clinical manifestation, and is usually diagnosed after the third decade of life. Summary: A5-year-old girl was referred for prophylactic thyroidectomy as she carried the p.C634R RET mutation. She was clinically asymptomatic, with a normally palpable thyroid and with the cervical region free of lymphadenopathy or other nodules. Preoperative tests revealed hypercalcemia associated with elevation of parathyroid hormone (PTH) (calcium = 11.2mg/dL, calcium ion = 1.48mmol/L, phosphorus = 4.0 mg/dL, alkaline phosphatase = 625U/L, parathyroid hormone (PTH) PTH = 998 pg/mL). A thyroid ultrasound was normal and parathyroid scintigraphy with (99m)Tc-Sestamibi revealed an area of radioconcentration in the upper half of the left thyroid lobe suggesting hyperfunctioning parathyroid tissue. She underwent total thyroidectomy and parathyroidectomy and developed hypocalcemia. The anatomopathological examination showed no histopathological changes in the thyroid tissue and an adenoma of the parathyroid gland, confirming the diagnosis of hyperparathyroidism. Conclusions: Primary hyperparathyroidism can be a precocious manifestation of MEN2A. This case report highlights that asymptomatic hypercalcemia should be scrutinized in children related to patients with MEN2A who carry a mutation in the RET proto-oncogene, especially mutations in the codon 634, before the currently recommended age of 8 years.
Resumo:
Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K(+) (K(ATP)) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of K(ATP) channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of K(ATP) channels, closed K(ATP) channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of K(ATP) channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.
Resumo:
In type 2 diabetes (DM2) there is progressive deterioration in beta-cell function and mass. It was found that islet function was about 50% of normal at the time of diagnosis and reduction in beta-cell mass of about 60% at necropsy (accelerated apoptosis). Among the interventions to preserve the beta-cells, those to lead to short-term improvement of beta-cell secretion are weight loss, metformin, sulfonylureas, and insulin. The long-term improvement was demonstrated with short-term intensive insulin therapy of newly diagnosed DM2, the use of antiapoptotic drugs such as glitazones, and the use of glucagon-like peptide-1 receptor agonists (GLP-1 mimetics), not inactivated by the enzyme dipeptidyl peptidase 4 and/or to inhibit that enzyme (GLP-1 enhancers). The incretin hormones are released from the gastrointestinal tract in response to nutrient ingestion to enhance glucose-dependent insulin secretion from the pancreas and overall maintenance of glucose homeostasis. From the two major incretins, GLP-1 and GIP (glucose-dependent insulinotropic polypeptide), only the first one or its mimetics or enhancers can be used for treatment. The GLP-1 mimetics exenatide and liraglutide as well as the DPP4 inhibitors (sitagliptin and vildagliptin) were approved for treatment of DM2.
Resumo:
Congenital hyperinsulinism (CHI) is a rare pancreatic beta-cell disease of neonates, characterized by inappropriate insulin secretion with severe persistent hypoglycemia, with regard to which many questions remain to be answered, despite the important acquisition of its molecular mechanisms in the last decade. The aim of this study was to examine pancreatic histology, beta-cell proliferation (immunohistochemistry with double staining for Ki-67/insulin), and beta-cell adenosine triphosphate-sensitive potassium channels genes from 11 Brazilian patients with severe medically unresponsive CHI who underwent pancreatectomy. Pancreatic histology and beta-cell proliferation in CHI patients were compared to pancreatic samples from 19 age-matched controls. Ten cases were classified as diffuse form (D-CHI) and 1 as focal form (F-CHI). beta-cell nucleomegaly and abundant cytoplasm were absent in controls and were observed only in D-CHI patients. The Ki-67 labeling index (Ki-67-LI) was used to differentiate the adenomatous areas of the F-CHI case (10.15%) from the ""loose cluster of islets`` found in 2 D-CHI samples (2.29% and 2.43%) and 1 control (1.54%) sample. The Ki-67-LI was higher in the F-CHI adenomatous areas, but D-CHI patients also had significantly greater Ki-67-LI (mean value = 2.41%) than age-matched controls (mean value = 1.87%) (P = 0.009). In this 1st genetic study of CHI patients in Brazil, no mutations or new polymorphisms were found in the 33-37 exons of the ABCC8 gene (SUR1) or in the entire exon of the KCNJ11 gene (Kir 6.2) in 4 of 4 patients evaluated. On the other hand, enhanced beta-cell proliferation seems to be a constant feature in CHI patients, both in diffuse and focal forms.
Resumo:
Crajoinas RO, Oricchio FT, Pessoa TD, Pacheco BP, Lessa LM, Malnic G, Girardi AC. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol 301: F355-F363, 2011. First published May 18, 2011; doi: 10.1152/ajprenal.00729.2010.-Glucagon-like peptide-1 (GLP-1) is a gut incretin hormone considered a promising therapeutic agent for type 2 diabetes because it stimulates beta cell proliferation and insulin secretion in a glucose-dependent manner. Cumulative evidence supports a role for GLP-1 in modulating renal function; however, the mechanisms by which GLP-1 induces diuresis and natriuresis have not been completely established. This study aimed to define the cellular and molecular mechanisms mediating the renal effects of GLP-1. GLP-1 (1 mu g.kg(-1).min(-1)) was intravenously administered in rats for the period of 60 min. GLP-1-infused rats displayed increased urine flow, fractional excretion of sodium, potassium, and bicarbonate compared with those rats that received vehicle (1% BSA/saline). GLP-1-induced diuresis and natriuresis were also accompanied by increases in renal plasma flow and glomerular filtration rate. Real-time RT-PCR in microdissected rat nephron segments revealed that GLP-1 receptor-mRNA expression was restricted to glomerulus and proximal convoluted tubule. In rat renal proximal tubule, GLP-1 significantly reduced Na(+)/H(+) exchanger isoform 3 (NHE3)-mediated bicarbonate reabsorption via a protein kinase A (PKA)-dependent mechanism. Reduced proximal tubular bicarbonate flux rate was associated with a significant increase of NHE3 phosphorylation at the PKA consensus sites in microvillus membrane vesicles. Taken together, these data suggest that GLP-1 has diuretic and natriuretic effects that are mediated by changes in renal hemodynamics and by downregulation of NHE3 activity in the renal proximal tubule. Moreover, our findings support the view that GLP-1-based agents may have a potential therapeutic use not only as antidiabetic drugs but also in hypertension and other disorders of sodium retention.
Resumo:
The aim of this study was to investigate whether the toxicity of saturated and polyunsaturated fatty acids (PUFA) on RINm5F cells is related to the phosphorylation state of Akt, ERK and PKC delta. The regulation of these kinases was compared in three experimental designs: (a) 4 h-exposure, (b) 4 h-exposure and a subsequent withdrawn of the FA for a 20 h period and (c) 24 h-exposure. Saturated and PUFA were toxic to RINm5F cells even at low concentrations. Also, evidence is provided for a late (i.e. the effect only appeared hours after the treatment) and a persistent regulation (i.e. maintenance of the effect for several hours) of Akt, ERK and PKC delta phosphorylation by the FA. Late activation of PKC delta seems important for palmitate cytotoxicity. Persistent activation of the survival proteins Akt and ERK by stearate, oleate and arachidonate might play an important role to prevent the toxic effect of posterior PKC delta activation. The results shown may explain why a short-period exposure to FA is not enough to induce cytotoxicity in pancreatic beta-cells, since survival pathways are activated. Besides, when this activation is persistent, it may overcome a posterior induction of death pathways. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE-Uncoupling protein 2 (UCP2) is a physiological downregulator of reactive oxygen species generation and plays an antiatherogenic role in the vascular wall. A common variant in the UCP2 promoter (-866G>A) modulates mRNA expression, with increased expression associated with the A allele. We investigated association of this variant with coronary artery disease (CAD) in two cohorts of type 2 diabetic subjects. RESEARCH DESIGN AND METHODS-We studied 3,122 subjects from the 6-year prospective Non-Insulin-Dependent Diabetes, Hypertension, Microalbuminuria, Cardiovascular Events, and Ramipril (DIABHYCAR) Study (14.9% of CAD incidence at follow-up). An independent, hospital-based cohort of 335 men, 52% of whom had CAD, was also studied. RESULTS-We observed an inverse association of the A allele with incident cases of CAD in a dominant model (hazard risk 0.88 [95% CI 0.80-0.96]; P = 0.006). Similar results were observed for baseline cases of CAD. Stratification by sex confirmed an allelic association with CAD in men, whereas no association was observed in women. All CAD phenotypes considered-myocardial infarction, angina pectoris, coronary artery bypass graft (CABG), and sudden death-contributed significantly to the association. Results were replicated in a cross-sectional study of an independent cohort (odds ratio 0.47 [95% CI 0.25-0.89]; P = 0.02 for a recessive model). CONCLUSIONS-The A allele of the -866G>A variant of UCP2 was associated with reduced risk of CAD in men with type 2 diabetes in a 6-year prospective study. Decreased risk of myocardial infarction, angina pectoris, CABG, and sudden death contributed individually and significantly to the reduction of CAD risk. This association was independent of other common CAD risk factors.
Resumo:
Introduction. Diabetes mellitus (DM) is a risk factor for erectile dysfunction (ED). Although type 2 DM is responsible for 90-95% diabetes cases, type 1 DM experimental models are commonly used to study diabetes-associated ED. Aim. Goto-Kakizaki (GK) rat model is relevant to ED studies since the great majority of patients with type 2 diabetes display mild deficits in glucose-stimulated insulin secretion, insulin resistance, and hyperglycemia. We hypothesized that GK rats display ED which is associated with decreased nitric oxide (NO) bioavailability. Methods. Wistar and GK rats were used at 10 and 18 weeks of age. Changes in the ratio of intracavernosal pressure/mean arterial pressure (ICP/MAP) after electrical stimulation of cavernosal nerve were determined in vivo. Cavernosal contractility was induced by electrical field stimulation (EFS) and phenylephrine (PE). In addition, nonadrenergic-noncholinergic (NANC)- and sodium nitroprusside (SNP)-induced relaxation were determined. Cavernosal neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) mRNA and protein expression were also measured. Main Outcome Measure. GK diabetic rats display ED associated with decreased cavernosal expression of eNOS protein. Results. GK rats at 10 and 18 weeks demonstrated impaired erectile function represented by decreased ICP/MAP responses. Ten-week-old GK animals displayed increased PE responses and no changes in EFS-induced contraction. Conversely, contractile responses to EFS and PE were decreased in cavernosal tissue from GK rats at 18 weeks of age. Moreover, GK rats at 18 weeks of age displayed increased NANC-mediated relaxation, but not to SNP. In addition, ED was associated with decreased eNOS protein expression at both ages. Conclusion. Although GK rats display ED, they exhibit changes in cavernosal reactivity that would facilitate erectile responses. These results are in contrast to those described in other experimental diabetes models. This may be due to compensatory mechanisms in cavernosal tissue to overcome restricted pre-penile arterial blood supply or impaired veno-occlusive mechanisms. Carneiro FS, Giachini FRC, Carneiro ZN, Lima VV, Ergul A, Webb RC, and Tostes RC. Erectile dysfunction in young non-obese type II diabetic Goto-Kakizaki rats is associated with decreased eNOS phosphorylation at Ser1177. J Sex Med 2010;7:3620-3634.
Resumo:
Rafacho A, Cestari TM, Taboga SR, Boschero AC, Bosqueiro JR. High doses of dexamethasone induce increased beta-cell proliferation in pancreatic rat islets. Am J Physiol Endocrinol Metab 296: E681-E689, 2009. First published January 21, 2009; doi:10.1152/ajpendo.90931.2008.-Activation of insulin signaling and cell cycle intermediates is required for adult beta-cell proliferation. Here, we report a model to study beta-cell proliferation in living rats by administering three different doses of dexamethasone (0.1, 0.5, and 1.0 mg/kg ip, DEX 0.1, DEX 0.5, and DEX 1.0, respectively) for 5 days. Insulin sensitivity, insulin secretion, and histomorphometric data were investigated. Western blotting was used to analyze the levels of proteins related to the control of beta-cell growth. DEX 1.0 rats, which present moderate hyperglycemia and marked hyperinsulinemia, exhibited a 5.1-fold increase in beta-cell proliferation and an increase (17%) in beta-cell size, with significant increase in beta-cell mass, compared with control rats. The hyperinsulinemic but euglycemic DEX 0.5 rats also showed a significant 3.6-fold increase in beta-cell proliferation. However, DEX 0.1 rats, which exhibited the lowest degree of insulin resistance, compensate for insulin demand by improving only islet function. Activation of the insulin receptor substrate 2/phosphatidylinositol 3-kinase/serine-threoninekinase/ribosomalprotein S6 kinase pathway, as well as protein retinoblastoma in islets from DEX 1.0 and DEX 0.5, but not in DEX 0.1, rats was also observed. Therefore, increasing doses of dexamethasone induce three different degrees of insulin requirement in living rats, serving as a model to investigate compensatory beta-cell alterations. Augmented beta-cell mass involves beta-cell hyperplasia and, to a lower extent, beta-cell hypertrophy. We suggest that alterations in circulating insulin and, to a lesser extent, glucose levels could be the major stimuli for beta-cell proliferation in the dexamethasone-induced insulin resistance.
Resumo:
OBJECTIVE: To observe the chronic effects of human growth hormone (hGH) and AOD9604 (a C-terminal fragment of hGH) on body weight, energy balance, and substrate oxidation rates in obese (ob/ob) and lean C57BL/6Jmice. In vitro assays were used to confirm whether the effects of AOD9604 are mediated through the hGH receptor, and if this peptide is capable of cell proliferation via the hGH receptor. METHOD: Obese and lean mice were treated with hGH, AOD or saline for 14 days using mini-osmotic pumps. Body weight, caloric intake, resting energy expenditure, fat oxidation, glucose oxidation, and plasma glucose, insulin and glycerol were measured before and after treatment. BaF-BO3 cells transfected with the hGH receptor were used to measure in Vitro I-125-hGH receptor binding and cell proliferation. RESULTS: Both hGH and AOD significantly reduced body weight gain in obese mice. This was associated with increased in vivo fat oxidation and increased plasma glycerol levels (an index of lipolysis). Unlike hGH, however, AOD9604 did not induce hyperglycaemia or reduce insulin secretion. AOD9604 does not compete for the hGH receptor and nor does it induce cell proliferation, unlike hGH. CONCLUSIONS: Both hGH and its C-terminal fragment reduce body weight gain, increase fat oxidation, and stimulate lipolysis in obese mice, yet AOD9604 does not interact with the hGH receptor. Thus, the concept of hGH behaving as a pro-hormone is further confirmed. This data shows that fragments of hGH can act in a manner novel to traditional hGH-stimulated pathways.
Resumo:
Resumo: Os mecanismos que regulam a homeostase da glucose no pós-prandial são distintos dos mecanismos desencadeados em situações de jejum. Desta forma o fígado parece desempenhar um papel fundamental na acção periférica da insulina após a refeição através de um mecanismo que envolve os nervos parassimpáticos hepáticos e o óxido nítrico (NO). Esta dissertação procura evidenciar a importância de ambos na fi siologia de manutenção da glicémia pós-prandial e na fi siopatologia da resistência à insulina. Dos resultados obtidos observou-se que após a administração de uma refeição mista o perfi l glicémico foi distinto em animais com ou sem ablação dos nervos parassimpáticos hepáticos. A desnervação parassimpática hepática aumentou as excursões de glucose imediatamente após a refeição. Estas diferenças nas excursões de glucose dependentes do parassimpático ocorreram devido a uma diminuição da clearance de glucose, sem que fosse afectada a taxa de aparecimento de glucose no sangue, a produção endógena de glucose e secreção de insulina ou péptido-C. Este aumento das excursões de glucose revelou-se ser devida à diminuição da clearance de glucose pós-prandial exclusivamente no músculo-esquelético, coração e o rim. Concluiu-se que o fígado teria uma função endócrina nestes três órgãos. Surgiu assim a hipótese dos S-nitrosotiois (RSNOs) poderem mimetizar essa resposta endócrina. Testou-se o seu efeito in vivo na sensibilidade à insulina. Para níveis baixos de sensibilidade à insulina, como jejum, desnervação no estado pós-prandial e resistência à insulina os RSNOs potenciaram a sensibilidade à insulina para valores semelhantes ao pós-prandial indicando-os como potenciais fármacos no tratamento da resistência à insulina. O NO e seus derivados ganharam assim uma evidência cada vez maior na acção periférica da insulina e portanto fez-se uma caracterização dos seus níveis desde a fi siologia à fi siopatologia. Os resultados obtidos nesta dissertação permitiram correlacionar a sintetase de óxido nítrico (NOS), enzima responsável pela síntese de NO como um possível marcador da resistência à insulina. Os resultados obtidos contribuíram substancialmente para compreender os mecanismos fi siológicos e fi siopatológicos de manutenção da glicémia após a refeição, colocando o fígado como órgão primordial na regulação periférica (extra-hepática) da captação de glucose.-------- ABSTRACT: The mechanisms responsible for the postprandial response are different from the ones in the fasted state. Therefore the liver seems to play a fundamental role in postprandial insulin action through a mechanism that evolves the hepatic parasympathetic nerves (HPN) and nitric oxide (NO). This work focused on the importance of both, HPN and NO, on postprandial glycemic control and on the pathophysiology of insulin resistance. We observed that after administration of a mixed meal the glycemic profi les with or without the parasympathetic nerves were distinct, increasing glucose excursions after ablation of HPN.This increase in glucose excursions was due to a decrease on the rate of glucose disappearance in extra-hepatic tissues. Glucose appearance rate, endogenous glucose production and insulin secretion were not related to this mechanism. The increase on glucose excursions after the ablation of hepatic parasympathetic system was due to a decrease on glucose clearance on extra-hepatic tissues, namely skeletal-muscle, heart and kidney. We concluded that the liver has an endocrine function on those tissues increasing their glucose uptake.This mechanism led to propose the hypothesis that S-nitrosothiols (RSNOs) could mimic this mechanism. Therefore RSNOs effects on insulin sensitivity were tested. For low insulin sensitivity levels, i.e. fasted state, ablation of the HPN or insulin resistance state induced by a high sucrose diet RSNOs increased insulin sensitivity to levels normally observed in the postprandial state. These results indicated these drugs as potential pharmacological tools in the treatment of insulin resistance. NO and their derivates emerged as fundamental parts of insulin action. A characterization of nitric oxide and nitric oxide synthase (NOS), the enzyme responsible for NO synthesis was part of the work performed. We concluded that NO could be used as a biomarker for insulin resistance states. This work contributed for understanding the mechanism underlying postprandial glycemic control indicating the liver as a key organ in the regulation of peripheral (extra-hepatic) insulin action.
Resumo:
RESUMO: A Diabetes Mellitus é uma doença metabólica crónica, com deficiência a nível do metabolismo dos hidratos de carbono, lípidos e proteínas, resultante de deficiências na secreção ou ação da insulina, ou de ambas, que quando não tratada antecipadamente e de modo conveniente, pode ter consequências muito graves. Dado a incidência a nível mundial da Diabetes Mellitus, torna-se de elevada importância avaliar toda a sua envolvência e estudar bem quais os critérios a ter em consideração. Este trabalho propõe-se estudar para além dos parâmetros bioquímicos relacionados com a doença - Glicose e Hemoglobina Glicada A1c (HbA1c), analisar os resultados dos últimos cinco anos (2008-2012) dos ensaios interlaboratoriais do PNAEQ, do Departamento de Epidemiologia, do Instituto Nacional de Saúde Dr. Ricardo Jorge. Foram também analisadas as metodologias utilizadas e as variações interlaboratoriais, de forma a entender qual ou quais são os parâmetros mais adequados para o seu diagnóstico e controlo. Este estudo utilizou a população de laboratórios portugueses, públicos e privados, de Portugal Continental e Ilhas, um laboratório de Angola e outro de Macau que se inscreveram no PNAEQ nestes cinco anos, sendo a amostra composta pelo n.º de participações. No programa de Química Clinica foram distribuídas 38 amostras e no programa de HbA1c foram distribuídas 22 amostras. Para a glicose, o nível de desempenho nos ensaios é na globalidade das amostras de Excelente, no entanto verifica-se que sempre que a concentração da amostra é de nível patológico, que a maioria dos ensaios o desempenho foi inferior – Bom. O método de eleição e com CV% mais baixos foi o método da hexoquinase. Para a HbA1c, o nível de desempenho nos ensaios é na globalidade das amostras de Excelente. O método de eleição e com CV% mais baixos foi o método de HPLC. O CV% para a glicose ronda desde 2010 a 2012, os 3% e para a HbA1c foi de aproximadamente 4,0% em 2012. A HbA1c tem mostrado ser uma ferramenta muito útil, importante e robusta na monitorização da Diabetes, sendo hoje em dia quase sempre requisitada em análises de rotina a diabéticos de modo a prevenir complicações que possam vir a acorrer. No futuro poderá ser um importante, senão o parâmetro de futuro, para o diagnóstico da Diabetes, no entanto, mesmo já tendo sido muito trabalhada a sua padronização, ainda existem questões por responder como quais são na realidade todos os seus interferentes, qual a verdadeira relação da HbA1c com a glicose média estimada, em todas as populações e com estudos epidemiológicos. Também a própria educação do diabético e clínico deve ser aprimorada, pelo que neste momento as PTGO e os doseamentos de glicose em jejum devem ser utilizados e encontrando-se a Norma da DGS N.º 033/2011 de acordo com as necessidades e com o estado da arte deste parâmetro. A implementação da glicose média estimada será uma mais-valia na monitorização dos diabéticos pelo que deverá ser uma das prioridades a ter em conta no futuro desta padronização, uniformizando a decisão clinica baseada nela e minimizando a dificuldade de interpretação de resultados de laboratório para laboratório. --------------ABSTRACT: Diabetes Mellitus is a chronic metabolic disease, with a deficit in the metabolism of carbohydrates, lipids and proteins, resulting from deficiencies in insulin secretion or action, or both, which if, when not early treated in a proper way, may result in very serious consequences. Given the worldwide incidence of diabetes mellitus, it is highly important to evaluate all its background and study specifically all the criteria to take into consideration. The aim of this thesis is to study and evaluate beyond the biochemical parameters related to the disease - Glucose and Glycated Haemoglobin A1c (HbA1c), analyze the results of the last five years (2008-2012) of the PNAEQ interlaboratorial tests, in the Department of Epidemiology of National Institute of Health Dr. Ricardo Jorge. It is also intended to analyze the methodologies used and the interlaboratorial variations, in order to understand the most suitable parameters for the diagnosis and control. This study was based in a population of Portuguese laboratories, public and private, of Portugal mainland and islands, a laboratory of Angola and other from Macau, who enrolled in PNAEQ in these five years, and the sample was composed by the n. º of holdings. In the Clinical Chemistry Program there were distributed 38 samples and in the program HbA1c were distributed 22 samples. For glucose, the level of performance in the total nº of the samples was Excellent; however, it was found that when the concentration level of the sample was pathological, in most of the tests the performance was Good. The most preferred method with the lowest CV% is the hexokinase method. For the HbA1c, as a whole, the samples’ tests were Excellent, at the level of performance. The method of election with the lower CV% was the HPLC. The CV% for glucose was around 3%, from 2010 to 2012 and the HbA1c was approximately 4.0% in 2012. The HbA1c method has demonstrated to be a very useful tool, important and robust for monitoring diabetes, being nowadays, almost always required in routine analysis to prevent future complications. In the future it may be an important parameter, if not the most important, for the diagnosis of diabetes. However, despite it has already been standardized, there are still some questions that need to be answered, such as, which are in fact all their interferences, which is the true connection of HbA1c, when compared with the estimated average glucose, in all populations and epidemiological studies. Moreover, the education of the patient and the doctor concerning diabetes should be improved. Nowadays, the Oral Glucose Tolerance Test (OGTT) and fasting glucose determinations should be used and, the needs and the state of the art of this parameter, should be in accordance with the Standard DGS N. º 033/2011. The Implementation of the estimated average glucose will be an added value in monitoring diabetics and, therefore, should be a priority to consider in its future standardization and clinical decision based on it, will be uniform and the difficulty of interpreting results from laboratory to laboratory will be minimal.
Resumo:
A key aspect of glucose homeostasis is the constant monitoring of blood glucose concentrations by specific glucose sensing units. These sensors, via stimulation of hormone secretion and activation of the autonomic nervous system (ANS), regulate tissue glucose uptake, utilization or production. The best described glucose detection system is that of the pancreatic beta-cells which controls insulin secretion. Secretion of other hormones, in particular glucagon, and activation of the ANS, are regulated by glucose through sensing mechanisms which are much less well characterized. Here I review some of the studies we have performed over the recent years on a mouse model of impaired glucose sensing generated by inactivation of the gene for the glucose transporter GLUT2. This transporter catalyzes glucose uptake by pancreatic beta-cells, the first step in the signaling cascade leading to glucose-stimulated insulin secretion. Inactivation of its gene leads to a loss of glucose sensing and impaired insulin secretion. Transgenic reexpression of the transporter in GLUT2/beta-cells restores their normal secretory function and rescues the mice from early death. As GLUT2 is also expressed in other tissues, these mice were then studied for the presence of other physiological defects due to absence of this transporter. These studies led to the identification of extra-pancreatic, GLUT2-dependent, glucose sensors controlling glucagon secretion and glucose utilization by peripheral tissues, in part through a control of the autonomic nervous system.
Resumo:
L'insuline est une hormone qui diminue la concentration de sucre dans le sang et qui est produite par la cellule β du pancréas. Un défaut de production de cette hormone est une des causes principales du diabète. Cette perte de production d'insuline est la conséquence à la fois, de la réduction du nombre de cellules β et du mauvais fonctionnement des cellules β restantes. L'inflammation, en activant la voie de signalisation «c-Jun N-terminal Kinase» (JNK) contribue au déclin de ces cellules. Cette voie de signalisation est activée par des protéines telles que des kinases qui reçoivent le signal de stress. Dans ce travail de thèse nous nous sommes intéressés à étudier le rôle de «Dual leucine zipper bearing kinase» (DLK) comme protéine capable de relayer le stress inflammatoire vers l'activation de la voie JNK dans les cellules β-pancréatiques. Nous montrons que DLK est présente dans les cellules β-pancréatiques et qu'elle agit effectivement comme un activateur de la voie de signalisation de JNK. En outre, DLK joue un rôle clé dans le contrôle de l'expression de l'insuline, de la sécrétion de l'insuline en réponse au glucose et au maintien de la survie des cellules β. Si l'expression de cette protéine diminue, la cellule produit moins d'insuline et sera plus sensible à la mort en réponse au stress inflammatoire. A l'inverse si l'expression de DLK est augmentée, la cellule β produit et secrète plus d'insuline. Des variations de l'expression de DLK sont par ailleurs, associées à l'état de santé de la cellule β. Chez la ratte en gestation ou la souris obèse, dans lesquelles la cellule β produit plus d'insuline, l'expression de DLK est augmentée. En revanche dans les cellules β des patients diabétiques, l'expression de DLK est diminuée par rapport aux cellules non malades. En résumé, DLK est nécessaire pour le bon fonctionnement de la cellule β-pancréatique et son expression corrèle avec le degré de santé des cellules, faisant que cette protéine pourrait être une cible thérapeutique potentiel. Les cellules β-pancréatiques ont la capacité de réguler la sécrétion d'insuline en s'adaptant précisément au stimulus et à la glycémie. La fonction de la cellule β est cruciale dans l'homéostasie du glucose puisque sa dysfonction et sa mort mènent au développement des diabètes de type 1 et 2. De nombreuses études suggèrent que l'inflammation pourrait avoir un rôle dans la dysfonction et la destruction de ces cellules dans le diabète de type 2. L'excès chronique de cytokines proinflammatoires accélère le dysfonctionnement de la cellule β pancréatique par un mécanisme qui implique la voie de signalisation «c-Jun N-terminal Kinase» (JNK). L'activation de cette voie est organisée par des protéines d'échafaudages. Elle se fait par trois étapes successives de phosphorylation impliquant une «Mitogen Activated Protein Kinase Kinase Kinase» (MAP3K), une MAP2K et JNK. Dans ce travail de thèse nous montrons l'expression abondante et spécifique de la MAP3K «Dual Leucine Zipper Bearing Kinase» (DLK) dans les cellules β pancréatiques. Cela est la conséquence de l'absence du répresseur transcriptionnel «Repressor Element 1 Silencing Transcription». Nous montrons également que DLK régule l'activation de JNK et qu'il s'avère nécessaire pour la fonction et la survie de la cellule β pancréatique par un mécanisme impliquant le facteur de transcription PDX-1. L'invalidation de l'expression de DLK diminue l'expression de l'insuline et potentialise l'apoptose induite par des cytokines proinflammatoires. A l'inverse, la surexpression de DLK augmente l'expression et la sécrétion d'insuline induites par le glucose. Par conséquent des niveaux d'expression appropriés de DLK sont déterminants pour la fonction et la survie de la cellule β pancréatique. L'obésité et la grossesse sont caractérisées par une hyperinsulinémie qui résulte d'une augmentation de la production et de la sécrétion de l'insuline. L'expression de DLK est augmentée dans des îlots de rattes gestantes et des souris obèses comparés à leurs contrôles respectifs. A l'inverse, dans des sujets diabétiques, l'expression de DLK est diminuée. Ensemble ces résultats montrent l'importance de DLK dans l'adaptation des îlots par un mécanisme qui pourrait impliquer la voie de signalisation de JNK. Des défauts dans cette voie régulée par DLK pourraient contribuer au dysfonctionnement et la mort de la cellule β pancréatique et par conséquent au développement du diabète. L'étude détaillée du mécanisme par lequel DLK active la voie de signalisation JNK et régule la fonction de la cellule β pancréatique pourrait ouvrir la voie des nouvelles thérapies ciblant l'amélioration de la fonction de la cellule β dans le diabète. - Pancreatic β-cells are evidently plastic in their ability to regulate insulin secretion. The quantity of insulin released by these cells varies according to the stimulus, and the prevailing glucose concentration, β-cell function is pivotal in glucose homeostasis, as their dysfunction, and death can lead to development of type 1 and type 2 diabetes. There are numerous reports so far underlying the role of inflammation in dysfunction, and destruction of β-cells, in both type 1 and type 2 diabetes. Chronic excess of pro¬inflammatory cytokines promotes a β-cell decline, via induction of the c-Jun N-terminal Kinase (JNK) pathway. The activation of the JNK pathway is organized by a scaffold protein-mediated module in which, a three-step phosphorylation cascade occurs. The latter includes, Mitogen activated protein kinase kinase kinase (MAP3K), MAP2K and JNK. In this thesis, we unveil that the MAP3K Dual Leucine Zipper Bearing Kinase (DLK) is selectively, and highly expressed in pancreatic β-cells, as the result from the absence of the transcriptional repressor named, Repressor Element 1 Silencing Transcription (REST). We show that DLK regulates activation of JNK, and is required for β-cell function and survival by modulating the PDX-1 transcription factor. Silencing of DLK expression diminishes insulin expression, and potentiated cytokine-mediated apoptosis. Conversely, overexpression of DLK increased insulin expression, and glucose-induced insulin secretion. Therefore, an appropriate level of DLK is critical for β-cell function and survival. Obesity and pregnancy are characterized by hyperinsulinemia resulting from an increased production and secretion of insulin. In isolated islets of pregnant rats, and obese mice, the expression of DLK was elevated when compared to their respective controls. However, decreased expression of DLK was observed in islets of individuals with diabetes. Taken together, we highlight the importance of DLK in islet adaptation, and describe a mechanism that may involve the JNK signaling. Deficiency in the JNK pathway regulated by DLK may contribute to β-cell failure and death, and thereby development of diabetes. Unraveling the mechanism whereby DLK activates the JNK pathway, and β-cell function, may pave the way for the design of novel therapies, aiming to improve β-cell function and survival in diabetes in general.
Resumo:
OBJECTIVE To establish the role of the transcription factor Pax4 in pancreatic islet expansion and survival in response to physiological stress and its impact on glucose metabolism, we generated transgenic mice conditionally and selectively overexpressing Pax4 or a diabetes-linked mutant variant (Pax4R129 W) in β-cells. RESEARCH DESIGN AND METHODS Glucose homeostasis and β-cell death and proliferation were assessed in Pax4- or Pax4R129 W-overexpressing transgenic animals challenged with or without streptozotocin. Isolated transgenic islets were also exposed to cytokines, and apoptosis was evaluated by DNA fragmentation or cytochrome C release. The expression profiles of proliferation and apoptotic genes and β-cell markers were studied by immunohistochemistry and quantitative RT-PCR. RESULTS Pax4 but not Pax4R129 W protected animals against streptozotocin-induced hyperglycemia and isolated islets from cytokine-mediated β-cell apoptosis. Cytochrome C release was abrogated in Pax4 islets treated with cytokines. Interleukin-1β transcript levels were suppressed in Pax4 islets, whereas they were increased along with NOS2 in Pax4R129 W islets. Bcl-2, Cdk4, and c-myc expression levels were increased in Pax4 islets while MafA, insulin, and GLUT2 transcript levels were suppressed in both animal models. Long-term Pax4 expression promoted proliferation of a Pdx1-positive cell subpopulation while impeding insulin secretion. Suppression of Pax4 rescued this defect with a concomitant increase in pancreatic insulin content. CONCLUSIONS Pax4 protects adult islets from stress-induced apoptosis by suppressing selective nuclear factor-κB target genes while increasing Bcl-2 levels. Furthermore, it promotes dedifferentiation and proliferation of β-cells through MafA repression, with a concomitant increase in Cdk4 and c-myc expression.