982 resultados para Insulated rail joints
Resumo:
Cervical zygapophysial joint nerve blocks typically are performed with fluoroscopic needle guidance. Descriptions of ultrasound-guided block of these nerves are available, but only one small study compared ultrasound with fluoroscopy, and only for the third occipital nerve. To evaluate the potential usefulness of ultrasound-guidance in clinical practice, studies that determine the accuracy of this technique using a validated control are essential. The aim of this study was to determine the accuracy of ultrasound-guided nerve blocks of the cervical zygapophysial joints using fluoroscopy as control.
Resumo:
To compare the MANKIN and OARSI cartilage histopathology assessment systems using human articular cartilage from a large number of donors across the adult age spectrum representing all levels of cartilage degradation.
Resumo:
ASTM A529 carbon¿manganese steel angle specimens were joined by flash butt welding and the effects of varying process parameter settings on the resulting welds were investigated. The weld metal and heat affected zones were examined and tested using tensile testing, ultrasonic scanning, Rockwell hardness testing, optical microscopy, and scanning electron microscopy with energy dispersive spectroscopy in order to quantify the effect of process variables on weld quality. Statistical analysis of experimental tensile and ultrasonic scanning data highlighted the sensitivity of weld strength and the presence of weld zone inclusions and interfacial defects to the process factors of upset current, flashing time duration, and upset dimension. Subsequent microstructural analysis revealed various phases within the weld and heat affected zone, including acicular ferrite, Widmanstätten or side-plate ferrite, and grain boundary ferrite. Inspection of the fracture surfaces of multiple tensile specimens, with scanning electron microscopy, displayed evidence of brittle cleavage fracture within the weld zone for certain factor combinations. Test results also indicated that hardness was increased in the weld zone for all specimens, which can be attributed to the extensive deformation of the upset operation. The significance of weld process factor levels on microstructure, fracture characteristics, and weld zone strength was analyzed. The relationships between significant flash welding process variables and weld quality metrics as applied to ASTM A529-Grade 50 steel angle were formalized in empirical process models.
Resumo:
The aim of this study was to identify quantitative trait loci (QTL) for osteochondrosis (OC) and palmar/plantar osseous fragments (POF) in fetlock joints in a whole-genome scan of 219 South German Coldblood horses. Symptoms of OC and POF were checked by radiography in 117 South German Coldblood horses at a mean age of 17 months. The radiographic examination comprised the fetlock and hock joints of all limbs. The genome scan included 157 polymorphic microsatellite markers. All microsatellite markers were equally spaced over the 31 autosomes and the X chromosome, with an average distance of 17.7 cM and a mean polymorphism information content (PIC) of 63%. Sixteen chromosomes harbouring putative QTL regions were further investigated by genotyping the animals with 93 additional markers. QTL that had chromosome-wide significance by non-parametric Z-means and LOD scores were found on 10 chromosomes. This included seven QTL for fetlock OC and one QTL on ECA18 associated with hock OC and fetlock OC. Significant QTL for POF in fetlock joints were located on equine chromosomes 1, 4, 8, 12 and 18. This genome scan is an important step towards the identification of genes responsible for OC in horses.
Resumo:
The Michigan Department of Transportation is evaluating upgrading their portion of the Wolverine Line between Chicago and Detroit to accommodate high speed rail. This will entail upgrading the track to allow trains to run at speeds in excess of 110 miles per hour (mph). An important component of this upgrade will be to assess the requirement for ballast material for high speed rail. In the event that the existing ballast materials do not meet specifications for higher speed train, additional ballast will be required. The purpose of this study, therefore, is to investigate the current MDOT railroad ballast quality specifications and compare them to both the national and international specifications for use on high speed rail lines. The study found that while MDOT has quality specifications for railroad ballast it does not have any for high speed rail. In addition, the American Railway Engineering and Maintenance-of-Way Association (AREMA), while also having specifications for railroad ballast, does not have specific specifications for high speed rail lines. The AREMA aggregate specifications for ballast include the following tests: (1) LA Abrasion, (2) Percent Moisture Absorption, (3) Flat and Elongated Particles, (4) Sulfate Soundness test. Internationally, some countries do require a highly standard for high speed rail such as the Los Angeles (LA) Abrasion test, which is uses a higher standard performance and the Micro Duval test, which is used to determine the maximum speed that a high speed can operate at. Since there are no existing MDOT ballast specification for high speed rail, it is assumed that aggregate ballast specifications for the Wolverine Line will use the higher international specifications. The Wolverine line, however, is located in southern Michigan is a region of sedimentary rocks which generally do not meet the existing MDOT ballast specifications. The investigation found that there were only 12 quarries in the Michigan that meet the MDOT specification. Of these 12 quarries, six were igneous or metamorphic rock quarries, while six were carbonate quarries. Of the six carbonate quarries four were locate in the Lower Peninsula and two in the Upper Peninsula. Two of the carbonate quarries were located in near proximity to the Wolverine Line, while the remaining quarries were at a significant haulage distance. In either case, the cost of haulage becomes an important consideration. In this regard, four of the quarries were located with lake terminals allowing water transportation to down state ports. The Upper Peninsula also has a significant amount of metal based mining in both igneous and metamorphic rock that generate significant amount of waste rock that could be used as a ballast material. The main drawback, however, is the distance to the Wolverine rail line. One potential source is the Cliffs Natural Resources that operates two large surface mines in the Marquette area with rail and water transportation to both Lake Superior and Lake Michigan. Both mines mine rock with a very high compressive strength far in excess of most ballast materials used in the United States and would make an excellent ballast materials. Discussions with Cliffs, however, indicated that due to environmental concerns that they would most likely not be interested in producing a ballast material. In the United States carbonate aggregates, while used for ballast, many times don't meet the ballast specifications in addition to the problem of particle degradation that can lead to fouling and cementation issues. Thus, many carbonate aggregate quarries in close proximity to railroads are not used. Since Michigan has a significant amount of carbonate quarries, the research also investigated using the dynamic properties of aggregate as a possible additional test for aggregate ballast quality. The dynamic strength of a material can be assessed using a split Hopkinson Pressure Bar (SHPB). The SHPB has been traditionally used to assess the dynamic properties of metal but over the past 20 years it is now being used to assess the dynamic properties of brittle materials such as ceramics and rock. In addition, the wear properties of metals have been related to their dynamic properties. Wear or breakdown of railroad ballast materials is one of the main problems with ballast material due to the dynamic loading generated by trains and which will be significantly higher for high speed rails. Previous research has indicated that the Port Inland quarry along Lake Michigan in the Southern Upper Peninsula has significant dynamic properties that might make it potentially useable as an aggregate for high speed rail. The dynamic strength testing conducted in this research indicate that the Port Inland limestone in fact has a dynamic strength close to igneous rocks and much higher than other carbonate rocks in the Great Lakes region. It is recommended that further research be conducted to investigate the Port Inland limestone as a high speed ballast material.
Resumo:
Recent changes in the cost and availability of natural gas (NG) as compared to diesel have sparked interest at all levels of the commercial shipping sector. In particular, Class 1 heavy-duty rail has been researching NG as a supplement to diesel combustion. This study investigates the relative economic and emissions advantage of making use of the energy efficiencies if combustion is circumvented altogether by use of fuel cell (FC) technologies applied to NG. FC technology for the transport sector has primarily been developed for the private automobile. However, FC use in the automobile sector faces considerable economic and logistical barriers such as cost, range, durability, and refueling infrastructure. The heavy-duty freight sector may be a more reasonable setting to introduce FC technology to the transportation market. The industry has shown interest in adopting NG as a potential fuel by already investing in NG infrastructure and locomotives. The two most promising FC technologies are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). SOFCs are more efficient and capable of accepting any kind of fuel, which makes them particularly attractive. The rail industry can benefit from the adoption of FC technology through reduced costs and emissions, as well as limiting dependence on diesel, which accounts for a large portion of operation expenses for Class 1 railroads. This report provides an economic feasibility analysis comparing the use of PEMFCs and SOFCs in heavy freight rail transport applications. The scope is to provide insight into which technologies could be pursued by the industry and to prioritize technologies that need further development. Initial results do not show economic potential for NG and fuel cells in locomotion, but some minimal potential for reduced emissions is seen. Various technology configurations and market scenarios analyzed could provide savings if the price of LNG is decreased and the price of diesel increases. The most beneficial areas of needed research include technology development for the variable output of SOFCs, and hot start-up optimization.
Immunohistochemical localization of RANK, RANKL and OPG in healthy and arthritic canine elbow joints
Resumo:
OBJECTIVE: To determine if the receptor activator of nuclear factor-kappaB-receptor activator of nuclear factor-kappaB ligand-osteoprotegerin (RANK-RANKL-OPG) system is active in bone remodeling in dogs and, if so, whether differences in expression of these mediators occur in healthy and arthritic joints. STUDY DESIGN: Experimental study. SAMPLE POPULATION: Fragmented processus coronoidei (n=20) were surgically removed from dogs with elbow arthritis and 5 corresponding healthy samples from dogs euthanatized for reasons other than elbow joint disease. METHODS: Bright-field immunohistochemistry and high-resolution fluorescence microscopy were used to investigate the distribution of RANK, RANKL, and OPG in healthy and arthritic joints. RESULTS: All 3 molecules were identified by immunostaining of canine bone tissue. In elbow dysplasia, the number of RANK-positive osteoclasts was increased. In their vicinity, cells expressing RANKL, a mediator of osteoclast activation, were abundant whereas the number of osteoblasts having the potential to limit osteoclastogenesis and bone resorption via OPG was few. CONCLUSIONS: The RANK-RANKL-OPG system is active in bone remodeling in dogs. In elbow dysplasia, a surplus of molecules promoting osteoclastogenesis was evident and is indicative of an imbalance between the mediators regulating bone resorption and bone formation. Both OPG and neutralizing antibodies against RANKL have the potential to counterbalance bone resorption. CLINICAL RELEVANCE: Therapeutic use of neutralizing antibodies against RANKL to inhibit osteoclast activation warrants further investigation.
Resumo:
Intermodal rail/road freight transport constitutes an alternative to long-haul road transport for the distribution of large volumes of goods. The paper introduces the intermodal transportation problem for the tactical planning of mode and service selection. In rail mode, shippers either book train capacity on a per-unit basis or charter block trains completely. Road mode is used for short-distance haulage to intermodal terminals and for direct shipments to customers. We analyze the competition of road and intermodal transportation with regard to freight consolidation and service cost on a model basis. The approach is applied to a distribution system of an industrial company serving customers in eastern Europe. The case study investigates the impact of transport cost and consolidation on the optimal modal split.
Resumo:
OBJECTIVE Marked differences exist between human knee and ankle joints regarding risks and progression of osteoarthritis (OA). Pathomechanisms of degenerative joint disease may therefore differ in these joints, due to differences in tissue structure and function. Focussing on structural issues which are design goals for tissue engineering, we compared cell and matrix morphologies in different anatomical sites of adult human knee and ankle joints. METHODS Osteochondral explants were acquired from knee and ankle joints of deceased persons aged 20 to 40 years and analyzed for cell, matrix and tissue morphology using confocal and electron microscopy and unbiased stereological methods. Variations associated with joint (knee versus ankle) and biomechanical role (convex versus concave articular surfaces) were identified by 2-way analysis of variance and post-hoc analysis. RESULTS Knee cartilage exhibited higher cell densities in the superficial zone than ankle cartilage. In the transitional zone, higher cell densities were observed in association with convex versus concave articular surfaces, without significant differences between knee and ankle cartilage. Highly uniform cell and matrix morphologies were evident throughout the radial zone in the knee and ankle, regardless of tissue biomechanical role. Throughout the knee and ankle cartilage sampled, chondron density was remarkably constant at approximately 4.2×10(6) chondrons/cm(3). CONCLUSION Variation of cartilage cell and matrix morphologies with changing joint and biomechanical environments suggests that tissue structural adaptations are performed primarily by the superficial and transitional zones. Data may aid the development of site-specific cartilage tissue engineering, and help identify conditions where OA is likely to occur.
Resumo:
The medial arterial supply to 68 of the 72 coxofemoral joints of 36 medium to large breed dogs was examined ultrasonographically. The medial circumflex femoral artery and three branches were identified; the artery and its transverse branch were identified in all 68 joints, and the deep branch was identified in 61 joints, and the ascending branch was identified in 63. However, the acetabular and obturator branches were not identified. The pulsatility index, the mean velocity and the peak systolic velocity of the medial circumflex femoral artery were determined and associated with a radiographic score of degenerative coxofemoral joint disease and a lath distraction index (LDI). In joints with a LDI greater than 0.35, the pulsatility index was significantly lower (P=0.023) and its mean velocity was higher (P=0.005). However, no significant associations were observed in individual dogs when the measurements in both joints were taken into account.
Resumo:
OBJECTIVE To describe the presence and amount of apoptotic ligamentous cells in different areas of partially ruptured canine cranial cruciate ligaments (prCCLs) and to compare these findings with apoptosis of ligamentous cells in totally ruptured cranial cruciate ligaments (trCCLs). ANIMALS 20 dogs with prCCLs and 14 dogs with trCCLs. PROCEDURES Dogs with prCCLs or trCCLs were admitted to the veterinary hospital for stifle joint treatment. Biopsy specimens of the intact area of prCCLs (group A) and the ruptured area of prCCLs (group B) as well as specimens from trCCLs (group C) were harvested during arthroscopy. Caspase-3 and poly (ADP-ribose) polymerase (PARP) detection were used to detect apoptotic ligamentous cells by immunohistochemistry. RESULTS No difference was found in the degree of synovitis or osteophytosis between prCCLs and trCCLs. No difference was found in degenerative changes in ligaments between groups A and B. A substantial amount of apoptotic cells could be found in > 90% of all stained slides. A correlation (r(s) = 0.71) was found between the number of caspase-3-and PARP-positive cells. No significant difference was found in the amount of apoptotic cells among the 3 groups. No significant correlation could be detected between the degree of synovitis and apoptotic cells or osteophyte production and apoptotic cells. CONCLUSIONS AND CLINICAL RELEVANCE The lack of difference between the 3 groups indicates that apoptosis could be a factor in the internal disease process leading to CCL rupture and is not primarily a consequence of the acute rupture of the ligament.
Resumo:
The paper presents a consistent set of results showing the ability of Laser Shock Processing (LSP) in modifying the overall properties of the Friction Stir Welded (FSW) joints made of AA 2024-T351. Based on laser beam intensities above 109 W/cm2 with pulse energies of several Joules and pulses durations of nanoseconds, LSP is able of inducing a compression residual stress field, improving the wear and fatigue resistance by slowing crack propagation and stress corrosion cracking, but also improving the overall behaviour of the structure. After the FSW and LSP procedures are briefly presented, the results of micro-hardness measurements and of transverse tensile tests, together with the corrosion resistance of the native joints vs. LSP treated are discussed. The ability of LSP to generate compressive residual stresses and to improve the behaviour of the FSW joints is underscored.